Appleman and Tree - CodeForces 461 B 树形dp

Appleman and Tree
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white.

Consider a set consisting of k (0 ≤ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into(k + 1) parts. Note, that each part will be a tree with colored vertices.

Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7).

Input

The first line contains an integer n (2  ≤ n ≤ 105) — the number of tree vertices.

The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≤ pi ≤ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1.

The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white.

Output

Output a single integer — the number of ways to split the tree modulo 1000000007 (109 + 7).

Sample test(s)
input
3
0 0
0 1 1
output
2
input
6
0 1 1 0 4
1 1 0 0 1 0
output
1
input
10
0 1 2 1 4 4 4 0 8
0 0 0 1 0 1 1 0 0 1
output
27


题意:将一个树切断一些边,使得每个子树都只有一个黑色的顶点,问有多少种切法。

思路:dp[u][0]代表这个顶点连接下面使得它所在的子树没有黑色顶点的情况,dp[u][1]代表这个顶点连接下面使得它所在的子树只有一个黑色顶点的情况。

AC代码如下:

#include
#include
#include
#include
#include
#include
using namespace std;
typedef long long ll;
void exgcd(ll a,ll b,ll& d,ll& x,ll& y)
{
	if(!b)d=a,x=1LL,y=0LL;
	else exgcd(b,a%b,d,y,x),y-=x*(a/b);
}
ll inv(ll a,ll m)
{
	ll d,x,y;
	exgcd(a,m,d,x,y);
	return d==1LL?(x+m)%m:-1LL;
}
vector vc[100010];
ll dp[100010][2],MOD=1000000007;
int root,vis[100010],col[100010];
void dfs(int u)
{ int i,j,k,len=vc[u].size();
  if(col[u]==1)
  { dp[u][1]=1;
    for(i=0;i



你可能感兴趣的:(CodeForces,dp动态规划和递推)