poj 1279 求半平面交的 面积(推荐)

poj 1279    求半平面交的 面积

题目来源:

http://poj.org/problem?id=1279

分析: 求半平面交的 面积

代码如下:

const double EPS = 1e-8 ;
const int Max_N = 1505 ;
double add(double a, double b){
    return (fabs(a + b) < EPS * (fabs(a) + fabs(b)) ) ?  0 : (a + b );
}
struct Point {
    double x, y;
    Point(){}
    Point(double x, double y):x(x) , y(y){}
    Point operator - (Point a){
        return Point(add(x , -a.x) , add(y , -a.y)) ;
    }
    Point operator + (Point a){
        return Point(add(x , a.x) , add(y , a.y)) ;
    }
    double operator ^(Point a){
        return add(x * a.y ,  - y * a.x) ;
    }
    Point operator * (double d){
        return Point(x * d , y * d) ;
    }
};
struct Line{  //有向直线
    Point st, ed;
    Line(){}
    Line(Point s, Point e){
        st = s ;
        ed = e ;
    }   
    bool onRight(Point a){ //点a在直线向量的右边
        return ((ed - st)^(a - st)) < 0 ;
    }
    bool parallel(Line l){
        return ((ed -st)^(l.ed - l.st)) == 0 ;
    }
    Point Crossnode(Line l){ //两直线的交点
        double t = (l.ed - l.st) ^(l.st - st) ;
        double t1 = (l.ed - l.st)^(ed - st) ;
        return st + (ed - st)*(t / t1) ;
    }
    double jijiao(){
        return atan2(ed.y - st.y , ed.x - st.x) ;
    }
    void write(){
        printf("%lf %lf %lf %lf\n" , st.x ,st.y ,ed.x ,ed.y) ;
    }
};
//排序函数 [优先顺序:1极角  2. 前面的直线在后面的左边 ]
bool operator < (Line l, Line r){
    double lp = l.jijiao() ;
    double rp = r.jijiao() ;
    if( fabs(lp - rp) > EPS)
        return lp < rp ;
    return ((l.st - r.st)^(r.ed - r.st)) < -EPS ;
}
//用于计算的双端队列
Line dequeue[Max_N] ;
Point pt[Max_N] ;
// 返回半平面交的 交点
//获取 半平面交的 多边形(多边形的核) o(n log(2n))
//参数: 向量集合line[l], 向量数量[ln] (半平面方向在向量的左边)
//函数运行后 如果n[即返回多边形的点数量] 为 0 则不存在半平面交的多边形(不存在区域或区域面积无穷大)
int halfPanelCross(Line line[] , int ln){
    int i, tn;
    sort(line, line  + ln ) ;
// 平面在向量左边 的筛选
    for(i = tn = 1 ; i < ln ; i++){// 处理极角相同的,选择向量方向最左边的
        if(fabs(line[i].jijiao() - line[i -1].jijiao())  > EPS)
            line[tn++] = line[i] ;
    }
    ln = tn ;
    int bot = 0 , top = 1 ;
    dequeue[0] = line[0] ;
    dequeue[1] = line[1] ;
    for(i = 2 ; i < ln ; i++){
        if(dequeue[top].parallel(dequeue[top - 1])|| dequeue[bot].parallel(dequeue[bot + 1]))
            return 0 ;
        while(bot < top &&
              line[i].onRight(dequeue[top].Crossnode(dequeue[top - 1])))
            top -- ;
        while(bot < top &&
             line[i].onRight(dequeue[bot].Crossnode(dequeue[bot + 1])))
            bot ++ ;
        dequeue[++ top] = line[i] ;
    }
    while(bot < top &&
          dequeue[bot].onRight(dequeue[top].Crossnode(dequeue[top -1])))
        top -- ;
    while(bot < top &&
          dequeue[top].onRight(dequeue[bot].Crossnode(dequeue[bot + 1])))
        bot ++ ;
    if(top <= bot + 1) return 0 ;  // 若队列为空, 则空集
    int n = 0 ;
    //计算交点(注意不同直线形成的交点可能重合) 半平面交是凸多边形
    for(i = bot ; i < top ; i++)
        pt[n ++] = dequeue[i].Crossnode(dequeue[i + 1]) ;
    if(bot < top +1)
        pt[n ++] = dequeue[bot].Crossnode(dequeue[top]) ;
    return n ;
}
Line List[Max_N] ;
Point p[Max_N] ;
int main(){
    int t , i, j ;
    int m ;
    scanf("%d" , &t) ;
    while(t--){
        scanf("%d" , &m) ;
        for(i = 0 ; i < m ; i++)
            scanf("%lf%lf" , &p[i].x , &p[i].y) ;
        for(i = 0 ;  i < m ; i++){
            List[i] = Line(p[(i + 1) % m] , p[i]) ;
        }
        int n = halfPanelCross(List , m) ;
        double area = 0.0 ;
        if(n ==0)
            printf("0.00\n") ;
        else{
            for(i = 0 ; i< n ; i++)
                area += pt[i]^pt[(i + 1) %n] ;
            area = fabs(area) ;
            printf("%.2lf\n" , area * 0.5) ;
        }
    }
    return 0;
}

 

 

转载于:https://www.cnblogs.com/zn505119020/p/3699582.html

你可能感兴趣的:(poj 1279 求半平面交的 面积(推荐))