java服务端监控平台设计

原文地址:http://blog.csdn.net/screaming/article/details/51726144
最近一直在找java应用监控相关成熟的解决方案,有好方案的朋友请留言

需求

功能性监控(availability):我们希望能够及时的发现线上的bug,异常。
性能监控与调优(performance):我们希望能够识别可能的性能瓶颈,并且有数据支撑方便对性能进行调优。比如慢速SQL,缓存命中率,链接池等。
预警报警:我们希望能够第一时间收到线上异常,进行处理。
辅助线上故障定位、故障分析
运维支持:我们系统能够有数据支撑我们进行容量规划、报警和扩容,等。
自动化运维:比如自动扩容;或者根据监控的数据和配置的SLA进行服务降级。等等。
性能监控平台

提供一站式的性能数据收集、计算、存储和展示服务
支持自定义的数据指标名称和数据纬度
提供任意指标任意纬度的实时数据查询

监控对象

1、模块调用监控(URI监控)

URI
调用总数
最大并发
总耗时
平均耗时
最快
最慢
错误数
URIProfile(每个URL访问的具体调用信息,即使Tracer功能)

URI请求方法

类型:Service/URL/DAO/IBATIS
总数
总耗时
平均耗时
耗时
错误数

2、Spring监控


方法
调用次数
总耗时
平均耗时
最大并发
最慢
错误次数

3、数据源监控

链接池中链接数
链接池链接数峰值
池中连接数峰值时间
活跃连接数
活跃连接数峰值

4、JDBC访问统计监控

SQL语句
执行数
执行时间
错误数
读取行数
更行行数

5、Exception监控

异常类型:java.io.IOException, etc.
异常方法:
URI
产生时间
异常数量
堆栈信息

6、JVM监控

Overview
Threading
GC
CPU
Heap

7、其他信息

业务自定义信息,比如订单数量,支持成功数,点击次数,下载次数,等。
Cache命中率
队列大小

监控方案设计

监控方案决策

1、每个应用自监控或者统一上报监控?

应用自监控,就是每个应用实例的监控数据存放在应用本身,比如一个Map。然后通过JMX或者其他方式暴露出去。然后开发人员可以通过JConsole或者API(一般是Web界面)得到这些监控数据。比如Druid就是这种做法。访问: hk01-xxxx-mob03.hk01:8090/druid/index.html 得到hk01-xxxx-mob03.hk01:8090这个应用的监控数据。

而统一上报监控方式,就是所有的应用监控数据都上报到监控中心,由监控中心负责接收、分析、合并、存储、可视化查询、报警等逻辑。这种方式是瘦客户端模型,客户端的职责就是埋点上报监控数据。所有的监控逻辑都在中心处理。

结论

自监控的话实现起来简单,并且没有与监控中心的网络交互,性能也会好很多。但是缺点就是缺乏全局的统计和监控。从实用角度来说还是集中式监控好一些。

2、如何避免key冲突?如何区分各个应用实例?

为了监控简单,我们希望监控项是不需要预定义的,监控项是一个 key => value 的形式。其中key是监控项的唯一ID,而value可以为数值类型(比如counter, timeInterval),文本类型(如exceptionMessage)。 如果不预定义监控项,那么就是由客户端按需创建key,然后上报 监控项, 服务器检测如果改监控项不存在就创建,否则根据监控项类型进行相应的操作(叠加 for counter,计算平均值 for timer等)。 这个特性很方便客户端监控自动化,但是这样也带来两个可能的问题:

不同的应用,有可能上报一样的key,这样会导致监控项冲突。
想要查看相同的应用的不同实例的上报情况。这种情形主要发生在查找集群短板的时候。Dragoon的监控上也有实例筛选项。
但是最理想的情况是我们既希望能够合并统计,又希望能够在需要的时候区分查看。比如我们希望统计NanTianMen这个应用的所有实例的监控数据,同时又希望能够单独查看每个实例的监控数据。Google和OpenTSDB提供了一种解决方案——对metrics打tags。这样相同key的 metrics会合并统计,又可以根据tags进行区分。对于上面的例子,假如上报的metric含有一 个host=xxx的tag和一个port=xxx的tag就可以区分出来了。但是这种情况会导致key对应的 数据特别多。根据tag过来会影响查询速度。所以需要trade off。

结论

对于key冲突,可以强制每个应用的客户端必须分配一个独立的appName/projectName `作为前缀。这个是合理的要求,这个appName也有利于区分应用各自的监控。如果出于安全考虑,不同应用还应该有appKey。 对于同一个应用不同实例的区分,可以在上报接口增加上报来源作为tag。可以让应用传递参数,也可以自动根据ip来。比如Google和OpenTSDB就是通过对metrics打tags来解决这个问题。这样相同key的 metrics会合并统计,又可以根据tags进行区分。对于上面的例子,假如上报的metric含有一个host=xxx的tag。但是这种情况会导致key对应的数据特别多。根据tag过来会影响查询速度。所以需要tradeoff。比如OpenTSDB就是支持并且要求必须有一个tag,比如host=webserver01。

3、监控中心与客户端应用之间要不要通过本地Agent上报?

采用集中式监控中心,意味着客户端与监控中心有交互。很多监控平台,比如阿里的Dragoon、新浪微博的Watchman, Stackify 都是有个本地agent的概念。Agent是OPS安装系统的时候预先安装好,每台机器一个Agent,负责该机器的所有监控数据上报。相当于应用与监控中心之间的一个通讯网关。应用通过JMX获取采集的数据,然后将数据上报给Agent,Agent再统一上报给Monitor。

这样的好处就是Client上报速度非常的快,而且基本不会失败。另外,同一机器上的多个client可以共用一个Agent通讯。而且Agent往往还承当了一个角色,就是主动收集机器监控信息(拉的方式)。缺点是需要预先按照Agent。所有也有很多监控平台是不走Agent的,直接client上报监控中心的方式。比如腾讯的ITIL和模块调用监控、Etsy的StatsD、Google的Cloud Monitor。大部分处于性能的考虑都是走UDP协议的,Google估计是因为是开发平台,走的是HTTP协议(Thus TCP协议)。这种方式简化了对客户端的预设要求和监控逻辑,实现起来比较简单。

结论

如果客户端与监控中心网络顺畅的情况下,绕开agent会简单很多。如果跨机房上报,那么异步化可能是很有必要的。采用agent是一个不错的方案。

4、存储最终状态还是事件序列

比如监控一个URL的请求数,每次+1,最终我们能够得到请求总数。这样的好处是节省存储空间和计算时间。但是由于只有一个最终状态,我们没有办法得到在什么时间段请求数最多。于是有另一种记录方式:对于每次请求都记录一次,而不是简单的+1。然后我们根据所有的签到记录,就可以统计出总请求数,和分布状况。但是缺点也很显然,就是浪费存储,并且每次都需要执行统计计算。

结论

最终状态还是弱了一些,事件序列会好一些,存储可以采用HBase这样的分布式存储系统,性能问题可以采用预聚合等方式解决。 Google Cloud Monitor 就是采用这个这种方式的:

The Google Cloud Monitoring API lets you access monitoring data for Google Cloud services. The data is organized as metrics and stored as data points that represent information at a specific time or over a specific time period. Examples include the current CPU utilization of your virtual machine, the number of requests received by you web server, or custom metrics you define yourself. A list of data points measured at successive times is called a time series.

不过对于Counter类型的统计,确实可以考虑只是存储最终状态的。因为这种类型的metric,一般要的就是快速得到最终的状态,并且可能会有相应的报警策略。如果每次都要汇总,性能上往往不可接受。

5、数据模型

数据模型非常重要,它决定了监控系统的能力。比如我们为什么不使用NOAH,其中一个原因就是NOAH的监控项只是简单的key-value形式。当然,它会自动记录请求源IP。但是其他的参数,比如应用等,就没有办法上报存储了。

根据上面的描述,其实我们的metrics基本就是抽象为带tags/labels标签的key-value格式。这个也是 Google Cloud Monitor 和 OpenTSDB 对metrics的定义:

key
timestamp
value - 这个OpenTSDB支持数值型的:integer和floating point。而Google Cloud Monitor支持的类型要丰富一些,见下面描述。
tag(s) - A key/value pair consisting of a tagk (the key) and a tagv (the value). OpenTSDB要求至少要有一个tag。
Google Cloud Mnoitor对Metric进行分类,支持的metricType有(@see metric-types ):

cumulative: The value is a total, accumulated since a given start time. For example, the total number of errors detected since a process started.
delta: The value is a change over a specified time period. For example, the number of errors detected in a minute.
gauge: The value is an instantaneous sample of a continuously-varying metric at a specific time. For example, a CPU’s current temperature.
而metric的valueType有:

bool: A Boolean value, either “true” or “false”.
distribution: A distribution, consisting of a list of buckets and optionally an underflow bucket and an overflow bucket. Each bucket has an upper bound, a lower bound, and a count. The distribution can be used to create a histogram.
double: A double-precision floating-point value.
int64: An integer value in the range [-263..263-1].
string: A Unicode string with backslash escaping.

6、 数据存储

因为Events或者Metrics的特殊性,一般都会采用一种专门的存储结构——Distributed time series database。比较有名的开源产品有如下这些:

RRD(round-robin-database): RRDtool使用的底层存储。C语言编写的。性能比较高
whisper: Graphite底层的存储,Python写的
prometheus : An open-source service monitoring system and time series database. 目前只有单机版本。
InfluxDB : 开源distributed time series, metrics, and events database。Go语言编写, 不依赖于其他外部服务。底层支持多种存储引擎,目前是LevelDB, RocksDB, HyberLevelDB和LMDB(0.9之后只支持Bolt,最新版本采用了自己写的存储引擎)。
OpenTSDB : 基于HBase编写的Time Series Database
kairosdb : OpenTSDB的改善版,底层存储引擎是Cassandra。
Heroic : Kairosdb的改善版,Spotify公司开源的时序数据库( Spotify的监控框架 ),引入了ElasticSearch作为元数据索引。目前还处于不稳定状态。
具体可以参考这篇论文: tsdb: A Compressed Database for Time Series 。

结论

如果要存储事件序列,那么InfluexDB和OpenTSDB是个非常不错的选择。都是可扩展,分布式存储,文档很详细,还是开源的。 influexDB 0.9.0 之后支持tag,使用风格跟Google Cloud Monitor很相似,而且支持String类型。并且最重要的是不需要额外搭建HBase(Thus Hadoop & Zookeeper),看起来非常值得期待,不过笔者曾经试过0.9.6版本的InfluxDB用来存储我们的接口响应时间,结果根本撑不住( InfluxDB becomes unavailable after heavy insert load )个人觉得这个产品还是太年轻,还没有到产品级别。OpenTSDBvalue不支持String类型,这意味着日志不能上报到OpenTSDB,需要另外处理。

由于这个比较复杂而且非常重要,我们在后面再单独详细讨论。

7、如果服务器挂掉了,统计数据怎么处理?缓存本地,等服务器起来再发送?还是丢弃?

前期可以先丢弃,后续要缓存起来。受影响比较大的是counter接口。

存储的话,可以考虑使用本地存储在RRD文件或者BDB中,或者消息队列中(RabbitMQ, ie.),最后再异步批量上报给中心的TSDB。

timestamp metrics value tags..
399993 mysql.Binlog_cache_disk_use 0 host=mydb.example.com
399993 mysql.Bytes_received 19453687 host=mydb.example.com
399993 mysql.Bytes_sent 1238166682 host=mydb.example.com

8、网络通信和协议

如何高性能的接收大量客户端的上报请求。以及使用什么通讯协议。

有几种选择:

HTTP
TCP
UDP: fire and forget, 主要需要注意MTU问题。
同时要考虑同步和异步接口。

应用监控平台概要设计
初步决定采用基于metrics上报的中心监控(无Agent)模式。

业务监控流程
业务对需要监控的地方埋点监控逻辑
监控统计数据通过某种方式上报到监控中心(或者监控中心通过某种方式采集业务监控数据)
监控中心对监控数据提供可视化查询界面,方便查看监控结果
如果监控结果满足配置的报警条件,会自动通知相关的负责人进行处理

监控系统模块

1、Client

主要职责是提供便利的方式让用户添加监控项。包括如下几个模块:

Metrics 监控项:counter, timer, etc.
AOP拦截配置或者注解方便业务埋点(提供缺省的采集实现,业务通过配置开启相应的监控项)
监控数据上报客户端(Reporter)
当监控中心挂掉的时候,将消息先存储在本地(BDB?)

2、监控中心(MonitorCenter)

监控中心应该提供接收客户端监控统计数据的上报接口。接收数据包,并且对这些数据进行存储,分析和可视化。 可抽象为一个事件状态机,接收客户端发送的事件,对事件进行响应。主要包含如下模块:

上报API接口服务(事件接收器,receive packets, UDP is prefered)
事件处理器
EventHandlers, Pipeline模式
内建的EventHandler: metrics(increment counters, timer, etc.)、Storage(periodically save the metrics to disk)、Analizer、Notifier
缓存和存储:对事件进行存储(需要考虑性能和容量)
定时任务处理器:Triggers, Actions, Scheduler
可视化界面(dashboards):Visualizer
配置管理界面,配置事件相应的负责人 && 事件处理工作流程。
上报API接口

Counter接口: A counter is a value that never decreases.

void increment(String key);
void increment(String key, Integer delta);
Gauges接口:A gauge is a value that has a discrete value at any given moment, like “heap_used” or “current_temperature”.

void addGauge(String key, Double value);
Metrics接口:A metric is tracked via distribution, and is usually used for timings. Metrics are collected by tracking the count, min, max, mean (average), and a simple bucket-based histogram of the distribution. This distribution can be used to determine median, 90th percentile, etc.

void addMetric(String key, T value);
其中针对时间的监控可以提供一个便利函数:

void addTimeMetric(String key, long timeInMillis);
日志上报接口: A label is just a key/value pair of strings, usually used to report a subsystem’s state, like “boiler=offline”.

void log(LoggerLevel level, String key, String message);
They have no real statistical value, but can be used to raise flags in logging and monitoring. 增加一个日志级别,可以根据日志级别来做相应的action。

大概是这样子的使用方式:

import me.arganzheng.study.monitor.*;
Agent agent = new Agent(“yourAppName”);
agent.increment(“myapp.login”);
agent.gauge(“heap_free”, 8675309);
agent.time(“some.longProcess”, new Runnable() {
public void run() {
// Do something….
});
agent.addMetric(“Maintenance Now.”, 600);
可以考虑使用注解简化客户端上报逻辑 newrelic :

@Trace(metricName=”YouMetricName”)
By default, the metric name will include the class name followed by the method name

时序数据库讨论
这里我们以两大开源的时序数据库:influxDB和OpenTSDB做对比讨论。

就文档看起来,influexDB使用起来更像传统的RDB。需要创建DB,但是不需要schema,columns是动态创建的。感觉columns就是OpenTSDB的tags键值对。

InfluxDB的抽象更类似于传统的关系型数据库,只是schemeless:Database, shard space, series(table), column。

写入格式:

OpenTSDB:

你可能感兴趣的:(java服务端监控平台设计)