参考:http://outofmemory.cn/code-snippet/2267/Python-duojincheng-multiprocessing-usage-example
参考:http://blog.csdn.net/qdx411324962/article/details/46810421
参考:http://www.lxway.com/4488626156.htm
廖雪峰官网 进程和线程、多进程、多线程、ThreadLocal、进程 vs. 线程、分布式进程
multiprocessing 文档: https://docs.python.org/2/library/multiprocessing.html#managers
Python 中的进程、线程、协程、同步、异步、回调:https://segmentfault.com/a/1190000001813992
multiprocessing 多进程的用法 :https://cuiqingcai.com/3335.html
由于要做把一个多线程改成多进程,看一下相关方面的东西,总结一下,主要是以下几个相关的标准库
从Python3.2开始,标准库提供了concurrent.futures 模块,它提供了 ThreadPoolExecutor 和 ProcessPoolExecutor 两个类,实现了对 threading 和 multiprocessing 的更高级的抽象,对编写 线程池/进程池 提供了直接的支持。
concurrent.futures 基础模块是 executor 和 future。
concurrent.futures 官方文档:https://docs.python.org/3/library/concurrent.futures.html
Python3 模块 - Concurrent.futures 教程:
https://www.yiibai.com/concurrency_in_python/concurrency_in_python_pool_of_processes.html
使用示例代码:
# -*- coding:utf-8 -*-
import redis
from redis import WatchError
from concurrent.futures import ProcessPoolExecutor
r = redis.Redis(host='127.0.0.1', port=6379)
# 减库存函数, 循环直到减库存完成
# 库存充足, 减库存成功, 返回True
# 库存不足, 减库存失败, 返回False
def reduce_stock():
# python中redis事务是通过pipeline的封装实现的
with r.pipeline() as pipe:
while True:
try:
# watch库存键, multi后如果该key被其他客户端改变, 事务操作会抛出WatchError异常
pipe.watch('stock:count')
count = int(pipe.get('stock:count'))
if count > 0: # 有库存
# 事务开始
pipe.multi()
pipe.decr('stock:count')
# 把命令推送过去
# execute返回命令执行结果列表, 这里只有一个decr返回当前值
print(pipe.execute()[0])
return True
else:
return False
except WatchError as ex:
# 打印WatchError异常, 观察被watch锁住的情况
print(ex)
pipe.unwatch()
def worker():
while True:
# 没有库存就退出
if not reduce_stock():
break
if __name__ == "__main__":
# 设置库存为100
r.set("stock:count", 100)
# 多进程模拟多个客户端提交
with ProcessPoolExecutor() as pool:
for _ in range(10):
pool.submit(worker)
# -*- coding:utf-8 -*-
from time import ctime, sleep
def music(argv):
for i in range(2):
print "listen music %s. %s" % (argv, ctime())
sleep(1)
def movie(argv):
for i in range(2):
print "watch movie! %s. %s" % (argv, ctime())
sleep(5)
if __name__ == '__main__':
music(u'trouble is a friend')
movie(u'变形金刚')
print "all over %s" % ctime()
Python中使用线程有两种方式:函数 或者用 类来包装线程对象。
函数式 :调用thread模块中的start_new_thread()函数来产生新线程。
语法如下: thread.start_new_thread(function, args[, kwargs])
参数说明:
function : 线程函数。
args : 传递给线程函数的参数,他必须是个tuple类型。
kwargs : 可选参数。
import thread
import time
def print_time(thread_name, delay):
count = 0
while count < 5:
time.sleep(delay)
count += 1
print "%s: %s" % (thread_name, time.ctime(time.time()))
if __name__ == "__main__":
try:
thread.start_new_thread(print_time, ("Thread-1", 2))
thread.start_new_thread(print_time, ("Thread-2", 4))
except BaseException as e:
print e
print "Error: unable to start thread"
while 1:
pass
使用Threading模块创建线程,直接从threading.Thread继承,然后重写__init__方法和run方法:
# coding=utf-8
# !/usr/bin/python
import threading
import time
exitFlag = 0
class myThread(threading.Thread):
def __init__(self, threadID, name, counter):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.counter = counter
def run(self):
print "Starting " + self.name
print_time(self.name, self.counter, 5)
print "Exiting " + self.name
def print_time(threadName, delay, counter):
while counter:
if exitFlag:
thread.exit()
time.sleep(delay)
print "%s: %s" % (threadName, time.ctime(time.time()))
counter -= 1
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)
thread1.start()
thread2.start()
print "Exiting Main Thread"
python提供了两个模块来实现多线程thread 和threading 。 thread有一些缺点,在threading 得到了弥补,强烈建议直接使用threading。
# coding=utf-8
import threading
from time import ctime, sleep
def music(argv):
for i in range(2):
print "listen music %s. %s" % (argv, ctime())
sleep(1)
def movie(argv):
for i in range(2):
print "watch movie %s! %s" % (argv, ctime())
sleep(5)
threads = []
t1 = threading.Thread(target=music, args=(u'trouble is a friend',))
threads.append(t1)
t2 = threading.Thread(target=movie, args=(u'变形金刚',))
threads.append(t2)
if __name__ == '__main__':
for t in threads:
t.setDaemon(True)
t.start()
print "all over %s" % ctime()
setDaemon(True) 将线程声明为守护线程,必须在start() 方法调用之前设置,如果不设置为守护线程程序会被无限挂起。
子线程启动后,父线程也继续执行下去,当父线程执行完最后一条语句print "all over %s" %ctime()后,没有等待子线程,直接就退出了,同时子线程也一同结束。
start()开始线程活动。
# 调整程序:
if __name__ == '__main__':
for t in threads:
t.setDaemon(True)
t.start()
t.join()
print "all over %s" %ctime()
对上面的程序加了个join()方法,用于等待线程终止。join()的作用是,在子线程完成运行之前,这个子线程的父线程将一直被阻塞。
注意: join()方法的位置是在for循环外的,也就是说必须等待for循环里的两个进程都结束后,才去执行主进程。
import threading
import time
def worker(num):
time.sleep(1)
print("The num is %d" % num)
print t.getName()
return
for i in range(20):
t = threading.Thread(target=worker, args=(i,), name="testThread")
t.start()
t.start() 激活线程,
t.getName() 获取线程的名称
t.setName() 设置线程的名称
t.name 获取或设置线程的名称
t.is_alive() 判断线程是否为激活状态
t.isAlive() 判断线程是否为激活状态
t.setDaemon() 设置为后台线程或前台线程(默认:False);通过一个布尔值设置线程是否为守护线程,必须在执行start()方法之后才可以使用。
如果是后台线程,主线程执行过程中,后台线程也在进行,主线程执行完毕后,后台线程不论成功与否,均停止;
如果是前台线程,主线程执行过程中,前台线程也在进行,主线程执行完毕后,等待前台线程也执行完成后,程序停止
t.isDaemon() 判断是否为守护线程
t.ident 获取线程的标识符。线程标识符是一个非零整数,只有在调用了start()方法之后该属性才有效,否则它只返回None。
t.join() 逐个执行每个线程,执行完毕后继续往下执行,该方法使得多线程变得无意义
t.run() 线程被cpu调度后自动执行线程对象的run方法
如果多个线程共同对某个数据修改,则可能出现不可预料的结果,为了保证数据的正确性,需要对多个线程进行同步。
使用Thread对象的Lock和Rlock可以实现简单的线程同步,这两个对象都有acquire方法和release方法。
对于那些需要每次只允许一个线程操作的数据,可以将其操作放到acquire和release方法之间。
如下:
多线程的优势在于可以同时运行多个任务(至少感觉起来是这样)。但是当线程需要共享数据时,可能存在数据不同步的问题。
考虑这样一种情况:一个列表里所有元素都是0,线程"set"从后向前把所有元素改成1,而线程"print"负责从前往后读取列表并打印。
那么,可能线程"set"开始改的时候,线程"print"便来打印列表了,输出就成了一半0一半1,这就是数据的不同步。
为了避免这种情况,引入了锁的概念。锁有两种状态:锁定 和 未锁定。
每当一个线程比如"set"要访问共享数据时,必须先获得锁定;如果已经有别的线程比如"print"获得锁定了,那么就让线程"set"暂停,
也就是同步阻塞;等到线程"print"访问完毕,释放锁以后,再让线程"set"继续。
经过这样的处理,打印列表时要么全部输出0,要么全部输出1,不会再出现一半0一半1的尴尬场面。
# coding=utf-8
# !/usr/bin/python
import threading
import time
class myThread(threading.Thread):
def __init__(self, threadID, name, counter):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.counter = counter
def run(self):
print "Starting " + self.name
# 获得锁,成功获得锁定后返回True
# 可选的timeout参数不填时将一直阻塞直到获得锁定
# 否则超时后将返回False
threadLock.acquire()
print_time(self.name, self.counter, 3)
# 释放锁
threadLock.release()
def print_time(threadName, delay, counter):
while counter:
time.sleep(delay)
print "%s: %s" % (threadName, time.ctime(time.time()))
counter -= 1
threadLock = threading.Lock()
threads = []
# 创建新线程
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)
# 开启新线程
thread1.start()
thread2.start()
# 添加线程到线程列表中
threads.append(thread1)
threads.append(thread2)
# 等待所有线程完成
for t in threads:
t.join()
print "Exiting Main Thread"
线程优先级队列 (Queue)
Python的Queue模块中提供了同步的、线程安全的队列类。
包括FIFO(先入先出)队列Queue,LIFO(后入先出)队列LifoQueue,和优先级队列PriorityQueue。
这些队列都实现了锁原语,能够在多线程中直接使用。可以使用队列来实现线程间的同步。
Queue模块中的常用方法:
Queue.qsize() 返回队列的大小
Queue.empty() 如果队列为空,返回True,反之False
Queue.full() 如果队列满了,返回True,反之False
Queue.full 与 maxsize 大小对应
Queue.get([block[, timeout]]) 获取队列,timeout是等待时间
Queue.get_nowait() 相当Queue.get(False)
Queue.put(item) 写入队列,timeout是等待时间
Queue.put_nowait(item) 相当Queue.put(item, False)
Queue.task_done() 在完成一项工作之后,Queue.task_done()函数向任务已经完成的队列发送一个信号
Queue.join() 实际上意味着等到队列为空,再执行别的操作
# coding=utf-8
# !/usr/bin/python
import Queue
import threading
import time
exitFlag = 0
class myThread(threading.Thread):
def __init__(self, threadID, name, q):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.q = q
def run(self):
print "Starting " + self.name
process_data(self.name, self.q)
print "Exiting " + self.name
def process_data(threadName, q):
while not exitFlag:
queueLock.acquire()
if not workQueue.empty():
data = q.get()
queueLock.release()
print "%s processing %s" % (threadName, data)
else:
queueLock.release()
time.sleep(1)
threadList = ["Thread-1", "Thread-2", "Thread-3"]
nameList = ["One", "Two", "Three", "Four", "Five"]
queueLock = threading.Lock()
workQueue = Queue.Queue(10)
threads = []
threadID = 1
# 创建线程
for tName in threadList:
thread = myThread(threadID, tName, workQueue)
thread.start()
threads.append(thread)
threadID += 1
# 填充队列
queueLock.acquire()
for word in nameList:
workQueue.put(word)
queueLock.release()
# 等待队列清空
while not workQueue.empty():
pass
# 通知线程退出
exitFlag = 1
# 等待所有线程完成
for t in threads:
t.join()
print "Exiting Main Thread"
由于线程之间是进行随机调度,并且每个线程可能只执行n条执行之后,CPU接着执行其他线程。为了保证数据的准确性,引入了锁的概念。
所以,可能出现如下问题:假设列表A的所有元素就为0,当一个线程从前向后打印列表的所有元素,另外一个线程则从后向前修改列表的元素为1, 那么输出的时候,列表的元素就会一部分为0,一部分为1,这就导致了数据的不一致。锁的出现解决了这个问题。
import threading
import time
globals_num = 0
lock = threading.RLock()
def func():
lock.acquire() # 获得锁
global globals_num
globals_num += 1
time.sleep(1)
print(globals_num)
lock.release() # 释放锁
for i in range(10):
t = threading.Thread(target=func)
t.start()
pass
RLock允许在同一线程中被多次acquire。而Lock却不允许这种情况。如果使用RLock,那么acquire和release必须成对出现,即调用了n次acquire,必须调用n次的release才能真正释放所占用的琐。
import threading
lock = threading.Lock() #Lock对象
lock.acquire()
lock.acquire() #产生了死琐。
lock.release()
lock.release()
import threading
rLock = threading.RLock() #RLock对象
rLock.acquire()
rLock.acquire() #在同一线程内,程序不会堵塞。
rLock.release()
rLock.release()
python线程的事件用于主线程控制其他线程的执行。事件主要提供了三个方法 set、wait、clear。 事件处理的机制:全局定义了一个“Flag”,如果“Flag”值为 False,那么当程序执行event.wait方法时就会阻塞,如果“Flag”值为True,那么event.wait方法时便不再阻塞。
clear: 将“Flag”设置为False
set: 将“Flag”设置为True
Event.isSet() :判断标识位是否为Ture。
import threading
def do(event):
print('start')
event.wait()
print('execute')
event_obj = threading.Event()
for i in range(10):
t = threading.Thread(target=do, args=(event_obj,))
t.start()
event_obj.clear()
# inp = input('input:')
inp = raw_input('input:')
if inp == 'true':
event_obj.set()
当线程执行的时候,如果flag为False,则线程会阻塞,当flag为True的时候,线程不会阻塞。它提供了本地和远程的并发性。
一个condition变量总是与某些类型的锁相联系,这个可以使用默认的情况或创建一个,
当几个condition变量必须共享和同一个锁的时候,是很有用的。锁是conditon对象的一部分:没有必要分别跟踪。
condition变量服从上下文管理协议:with语句块封闭之前可以获取与锁的联系。
acquire() 和 release() 会调用与锁相关联的相应的方法。
其他和锁关联的方法必须被调用,wait()方法会释放锁,
当另外一个线程使用 notify() or notify_all()唤醒它之前会一直阻塞。一旦被唤醒,wait()会重新获得锁并返回,
Condition类实现了一个conditon变量。这个conditiaon变量允许一个或多个线程等待,直到他们被另一个线程通知。
如果lock参数,被给定一个非空的值,,那么他必须是一个lock或者Rlock对象,它用来做底层锁。否则,会创建一个新的Rlock对象,用来做底层锁。
wait(timeout=None) :等待通知,或者等到设定的超时时间。
当调用这wait()方法时,如果调用它的线程没有得到锁,那么会抛出一个RuntimeError异常。
wati()释放锁以后,在被调用相同条件的另一个进程用notify() or notify_all() 叫醒之前会一直阻塞。
wait()还可以指定一个超时时间。 如果有等待的线程,notify()方法会唤醒一个在等待conditon变量的线程。notify_all() 则会唤醒所有在等待conditon变量的线程。
注意: notify()和notify_all()不会释放锁,也就是说,线程被唤醒后不会立刻返回他们的wait() 调用。
除非线程调用notify()和notify_all()之后放弃了锁的所有权。
在典型的设计风格里,利用condition变量用锁去通许访问一些共享状态,线程在获取到它想得到的状态前,会反复调用wait()。
修改状态的线程在他们状态改变时调用 notify() or notify_all(),用这种方式,线程会尽可能的获取到想要的一个等待者状态。
例子:生产者-消费者模型
import threading
import time
def consumer(cond):
with cond:
print("consumer before wait")
cond.wait()
print("consumer after wait")
def producer(cond):
with cond:
print("producer before notifyAll")
cond.notifyAll()
print("producer after notifyAll")
condition = threading.Condition()
c1 = threading.Thread(name="c1", target=consumer, args=(condition,))
c2 = threading.Thread(name="c2", target=consumer, args=(condition,))
p = threading.Thread(name="p", target=producer, args=(condition,))
c1.start()
time.sleep(2)
c2.start()
time.sleep(2)
p.start()
https://my.oschina.net/leejun2005/blog/203148
Data can be stored in a shared memory map using Value or Array.
For example, the following code. https://docs.python.org/2/library/multiprocessing.html#sharing-state-between-processes
在使用并发设计的时候最好尽可能的避免共享数据,尤其是在使用多进程的时候。如果你真有需要要共享数据, multiprocessing提供了两种方式。
multiprocessing 中的 Array 和 Value。数据可以用 Value 或 Array 存储在一个共享内存地图里,如下:
from multiprocessing import Array, Value, Process
def func(a, b):
a.value = 3.333333333333333
for j in range(len(b)):
b[j] = -b[j]
if __name__ == "__main__":
num = Value('d', 0.0)
arr = Array('i', range(11))
if 0:
t = Process(target=func, args=(num, arr))
t.start()
t.join()
else:
c = Process(target=func, args=(num, arr))
d = Process(target=func, args=(num, arr))
c.start()
d.start()
c.join()
d.join()
print(num.value)
print(arr[:])
for i in arr:
print i,
输出
3.33333333333
0 1 2 3 4 5 6 7 8 9 10
创建 num 和 arr 时,“d”和“i”参数 由Array模块使用的typecodes创建:“d”表示一个双精度的浮点数,“i”表示一个有符号的整数,这些共享对象将被线程安全的处理。
Array(‘i’, range(10))中的‘i’参数:
‘c’: ctypes.c_char
‘u’: ctypes.c_wchar
‘b’: ctypes.c_byte
‘B’: ctypes.c_ubyte
‘h’: ctypes.c_short
‘H’: ctypes.c_ushort
‘i’: ctypes.c_int
‘I’: ctypes.c_uint
‘l’: ctypes.c_long,
‘L’: ctypes.c_ulong
‘f’: ctypes.c_float
‘d’: ctypes.c_double
A manager object returned by Manager() controls a server process which holds Python objects and allows other processes to manipulate them using proxies.
A manager returned by Manager() will support types list, dict, Namespace, Lock, RLock, Semaphore, BoundedSemaphore, Condition, Event, Queue, Value and Array.
https://docs.python.org/2/library/multiprocessing.html#managers
multiprocessing 中的 Manager()
Python中进程间共享数据,除了基本的queue,pipe和value+array外,还提供了更高层次的封装。使用multiprocessing.Manager可以简单地使用这些高级接口。
Manager()返回的manager对象控制了一个server进程,此进程包含的python对象可以被其他的进程通过proxies来访问。从而达到多进程间数据通信且安全。
Manager支持的类型有list,dict,Namespace,Lock,RLock,Semaphore,BoundedSemaphore,Condition,Event,Queue,Value和Array。
from multiprocessing import Process, Manager
def f(d, l):
d["name"] = "king"
d["age"] = 100
d["Job"] = "python"
l.reverse()
if __name__ == "__main__":
with Manager() as man:
d_temp = man.dict()
l_temp = man.list(range(10))
p = Process(target=f, args=(d_temp, l_temp))
p.start()
p.join()
print(d_temp)
print(l_temp)
Server process manager 比 shared memory 更灵活,因为它可以支持任意的对象类型。另外,一个单独的manager可以通过进程在网络上不同的计算机之间共享,不过他比shared memory要慢。
关于协程,可以参考 greenlet,stackless,gevent,eventlet等的实现。
我们都知道并发(不是并行)编程目前有四种方式,多进程,多线程,异步,和协程。
多进程编程在python中有类似C的os.fork,当然还有更高层封装的multiprocessing标准库,在之前写过的python高可用程序设计方法http://www.cnblogs.com/hymenz/p/3488837.html中提供了类似nginx中master process和worker process间信号处理的方式,保证了业务进程的退出可以被主进程感知。
多线程编程python中有Thread和threading,在linux下所谓的线程,实际上是LWP轻量级进程,其在内核中具有和进程相同的调度方式,有关LWP,COW(写时拷贝),fork,vfork,clone等的资料较多,这里不再赘述。
异步在linux下主要有三种实现select,poll,epoll 。
说 python 的 协程 肯定要说yield
#coding=utf-8
import time
import sys
# 生产者
def produce(l):
i=0
while 1:
if i < 5:
l.append(i)
yield i
i=i+1
time.sleep(1)
else:
return
# 消费者
def consume(l):
p = produce(l)
while 1:
try:
p.next()
while len(l) > 0:
print l.pop()
except StopIteration:
sys.exit(0)
l = []
consume(l)
在上面的例子中,当程序执行到produce的yield i时,返回了一个generator,当我们在custom中调用p.next(),程序又返回到produce的yield i继续执行,这样l中又append了元素,然后我们print l.pop(),直到p.next()引发了StopIteration异常。
通过上面的例子我们看到协程的调度对于内核来说是不可见的,协程间是协同调度的,这使得并发量在上万的时候,协程的性能是远高于线程的。
import stackless
import urllib2
def output():
while 1:
url=chan.receive()
print url
f=urllib2.urlopen(url)
#print f.read()
print stackless.getcurrent()
def input():
f=open('url.txt')
l=f.readlines()
for i in l:
chan.send(i)
chan=stackless.channel()
[stackless.tasklet(output)() for i in xrange(10)]
stackless.tasklet(input)()
stackless.run()
协程的好处:
缺点:
协程,又称微线程,纤程。英文名Coroutine。
子程序,或者称为函数,在所有语言中都是层级调用,比如A调用B,B在执行过程中又调用了C,C执行完毕返回,B执行完毕返回,最后是A执行完毕。
所以子程序调用是通过栈实现的,一个线程就是执行一个子程序。
子程序调用总是一个入口,一次返回,调用顺序是明确的。
而协程的调用和子程序不同。
协程看上去也是子程序,但执行过程中,在子程序内部可中断,然后转而执行别的子程序,在适当的时候再返回来接着执行。
注意,在一个子程序中中断,去执行其他子程序,不是函数调用,有点类似CPU的中断。比如子程序A、B:
def A():
print '1'
print '2'
print '3'
def B():
print 'x'
print 'y'
print 'z'
假设由协程执行,在执行A的过程中,可以随时中断,去执行B,B也可能在执行过程中中断再去执行A,结果可能是:
1
2
x
y
3
z
但是在A中是没有调用B的,所以协程的调用比函数调用理解起来要难一些。
看起来A、B的执行有点像多线程,
但协程的特点在于是一个线程执行,
那和多线程比,协程有何优势?
最大的优势就是协程极高的执行效率。因为子程序切换不是线程切换,而是由程序自身控制,
因此,没有线程切换的开销,和多线程比,线程数量越多,协程的性能优势就越明显。
第二大优势就是不需要多线程的锁机制。
因为只有一个线程,也不存在同时写变量冲突,在协程中控制共享资源不加锁,只需要判断状态就好了,所以执行效率比多线程高很多。
因为协程是一个线程执行,那怎么利用多核CPU呢?
最简单的方法是多进程+协程,既充分利用多核,又充分发挥协程的高效率,可获得极高的性能。
Python对协程的支持还非常有限,用在generator中的yield可以一定程度上实现协程。
虽然支持不完全,但已经可以发挥相当大的威力了。
一个例子:
传统的生产者-消费者模型是一个线程写消息,一个线程取消息,通过锁机制控制队列和等待,但一不小心就可能死锁。如果改用协程,生产者生产消息后,直接通过yield跳转到消费者开始执行,待消费者执行完毕后,切换回生产者继续生产,效率极高:
import time
def consumer():
r = ''
while True:
n = yield r
if not n:
return
print('[CONSUMER] Consuming %s...' % n)
time.sleep(1)
r = '200 OK'
def produce(c):
c.next()
n = 0
while n < 5:
n = n + 1
print('[PRODUCER] Producing %s...' % n)
r = c.send(n)
print('[PRODUCER] Consumer return: %s' % r)
c.close()
if __name__=='__main__':
c = consumer()
produce(c)
执行结果:
[PRODUCER] Producing 1...
[CONSUMER] Consuming 1...
[PRODUCER] Consumer return: 200 OK
[PRODUCER] Producing 2...
[CONSUMER] Consuming 2...
[PRODUCER] Consumer return: 200 OK
[PRODUCER] Producing 3...
[CONSUMER] Consuming 3...
[PRODUCER] Consumer return: 200 OK
[PRODUCER] Producing 4...
[CONSUMER] Consuming 4...
[PRODUCER] Consumer return: 200 OK
[PRODUCER] Producing 5...
[CONSUMER] Consuming 5...
[PRODUCER] Consumer return: 200 OK
注意到consumer函数是一个generator(生成器),把一个consumer传入produce后:
1. 首先调用c.next()启动生成器;
2. 然后,一旦生产了东西,通过c.send(n)切换到consumer执行;
3. consumer通过yield拿到消息,处理,又通过yield把结果传回;
4. produce拿到consumer处理的结果,继续生产下一条消息;
5. produce决定不生产了,通过c.close()关闭consumer,整个过程结束。
整个流程无锁,由一个线程执行,produce和consumer协作完成任务,所以称为“协程”,而非线程的抢占式多任务。
最后套用Donald Knuth的一句话总结协程的特点:“子程序就是协程的一种特例”
线程和进程的操作是由程序触发系统接口,最后的执行者是系统;协程的操作则是程序员。
协程存在的意义:对于多线程应用,CPU通过切片的方式来切换线程间的执行,线程切换时需要耗时(保存状态,下次继续)。
协程,则只使用一个线程,在一个线程中规定某个代码块执行顺序。
协程的适用场景:当程序中存在大量不需要CPU的操作时(IO),
event loop是协程执行的控制点,如果你希望执行协程,就需要用到它们。
event loop提供了如下的特性:
注册、执行、取消延时调用(异步函数)、创建用于通信的client和server协议(工具)、创建和别的程序通信的子进程和协议(工具) 把函数调用送入线程池中
协程示例:
#---------python3_start---------------
import asyncio
async def cor1():
print("COR1 start")
await cor2()
print("COR1 end")
async def cor2():
print("COR2")
loop = asyncio.get_event_loop()
loop.run_until_complete(cor1())
loop.close()
#---------python3_end---------------
最后三行是重点。
asyncio.get_event_loop() : asyncio启动默认的event loop
run_until_complete() : 这个函数是阻塞执行的,知道所有的异步函数执行完成,
close() : 关闭 event loop。
import greenlet
def fun1():
print("12")
gr2.switch()
print("56")
gr2.switch()
def fun2():
print("34")
gr1.switch()
print("78")
gr1 = greenlet.greenlet(fun1)
gr2 = greenlet.greenlet(fun2)
gr1.switch()
gevent属于第三方模块需要下载安装包
pip3 install --upgrade pip3
pip3 install gevent
import gevent
def fun1():
print("www.baidu.com") # 第一步
gevent.sleep(0)
print("end the baidu.com") # 第三步
def fun2():
print("www.zhihu.com") # 第二步
gevent.sleep(0)
print("end th zhihu.com") # 第四步
gevent.joinall([
gevent.spawn(fun1),
gevent.spawn(fun2),
])
遇到IO操作自动切换:
import gevent
import requests
def func(url):
print("get: %s" % url)
gevent.sleep(0)
proxies = {
"http": "http://172.17.18.80:8080",
"https": "http://172.17.18.80:8080",
}
date = requests.get(url, proxies=proxies)
ret = date.text
print(url, len(ret))
gevent.joinall([
gevent.spawn(func, 'https://www.baidu.com/'),
gevent.spawn(func, 'http://www.sina.com.cn/'),
gevent.spawn(func, 'http://www.qq.com/'),
])
http://www.cnblogs.com/zingp/p/5911537.html
http://python.jobbole.com/87310/
http://www.cnblogs.com/gide/p/6187080.html
python中多进程+协程的使用以及为什么要用它: http://blog.csdn.net/lambert310/article/details/51162634
从两个简单例子窥视协程的惊人性能(Python):http://walkerqt.blog.51cto.com/1310630/1439034
greenlet:http://greenlet.readthedocs.org/en/latest/
eventlet: http://eventlet.net/
http://gashero.iteye.com/blog/442177
示例代码:
"""
对于有些人来说Gevent和multiprocessing组合在一起使用算是个又高大上又奇葩的工作模式.
Python的多线程受制于GIL全局锁的特性,Gevent身为协程也是线程的一种,只是io调度上自己说了算而已。
那么如何使用多个cpu核心? 可以利用多进程mutliprocessing来进行多核并行工作,在多进程里面使用gevent协程框架可以更好的做io调度,相比线程来说减少了无谓的上下文切换.
废话少说,直接上个例子. 下面是多进程下生产者消费者的工作模式,代码本身很简单,自己跑一下就知道怎么一回事了.
"""
from multiprocessing import Process, cpu_count, Queue, JoinableQueue
from gevent import monkey
monkey.patch_all()
import gevent
import datetime
class Consumer(object):
def __init__(self, q, no_tasks, name):
self._no_tasks = no_tasks
self._queue = q
self.name = name
self._rungevent(self._queue, self._no_tasks)
def _rungevent(self, q, no_tasks):
jobs = [gevent.spawn(self._printq) for x in range(no_tasks)]
gevent.joinall(jobs)
def _printq(self):
while 1:
value = self._queue.get()
if value is None:
self._queue.task_done()
break
else:
print("{0} time: {1}, value: {2}".format(self.name, datetime.datetime.now(), value))
return
class Producer(object):
def __init__(self, q, no_tasks, name, consumers_tasks):
print(name)
self._q = q
self._no_tasks = no_tasks
self.name = name
self.consumer_tasks = consumers_tasks
self._rungevent()
def _rungevent(self):
jobs = [gevent.spawn(self.produce) for x in range(self._no_tasks)]
gevent.joinall(jobs)
for x in range(self.consumer_tasks):
self._q.put_nowait(None)
self._q.close()
def produce(self):
for no in range(10000):
print(no)
self._q.put(no, block=False)
return
def main():
total_cores = cpu_count()
total_processes = total_cores * 2
q = JoinableQueue()
print(
"Gevent on top multiprocessing with 17 gevent coroutines "
"\n 10 producers gevent and 7 consumers gevent"
)
producer_gevents = 10
consumer_gevents = 7
jobs = []
start = datetime.datetime.now()
for x in range(total_cores):
if not x % 2:
p = Process(target=Producer, args=(q, producer_gevents, "producer %d" % 1, consumer_gevents))
p.start()
jobs.append(p)
else:
p = Process(target=Consumer, args=(q, consumer_gevents, "consumer %d" % x))
p.start()
jobs.append(p)
for job in jobs:
job.join()
print(
"{0} process with {1} producer gevents and {2} consumer gevents took{3}\
seconds to produce {4} numbers and consume".format(
total_processes,
producer_gevents * total_cores,
consumer_gevents * total_cores,
datetime.datetime.now() - start,
producer_gevents * total_cores * 10000
)
)
if __name__ == '__main__':
main()
像线程一样管理进程,这个是mutilprocess的核心,他与threading很是相像,对多核CPU的利用率会比threading好的多。
import multiprocessing
def worker(num):
"""thread worker function"""
print 'Worker:', num
return
if __name__ == '__main__':
jobs = []
for i in range(5):
p = multiprocessing.Process(target=worker, args=(i,))
jobs.append(p)
p.start()
确定当前的进程,即是给进程命名,方便标识区分,跟踪
import multiprocessing
import time
def worker():
name = multiprocessing.current_process().name
print(name, 'Starting')
time.sleep(2)
print(name, 'Exiting')
def my_service():
name = multiprocessing.current_process().name
print(name, 'Starting')
time.sleep(3)
print(name, 'Exiting')
if __name__ == '__main__':
service = multiprocessing.Process(name='my_service', target=my_service)
worker_1 = multiprocessing.Process(name='worker 1', target=worker)
worker_2 = multiprocessing.Process(target=worker) # default name
worker_1.start()
worker_2.start()
service.start()
守护进程就是不阻挡主程序退出,自己干自己的。 mutilprocess.setDaemon(True)
就这句。
等待守护进程退出,要加上join,join可以传入浮点数值,等待n久就不等了
import multiprocessing
import time
import sys
def daemon():
name = multiprocessing.current_process().name
print 'Starting:', name
time.sleep(2)
print 'Exiting :', name
def non_daemon():
name = multiprocessing.current_process().name
print 'Starting:', name
print 'Exiting :', name
if __name__ == '__main__':
d = multiprocessing.Process(name='daemon',
target=daemon)
d.daemon = True
n = multiprocessing.Process(name='non-daemon',
target=non_daemon)
n.daemon = False
d.start()
n.start()
d.join(1)
print 'd.is_alive()', d.is_alive()
n.join()
最好使用 poison pill,强制的使用terminate()。注意 terminate之后要join,使其可以更新状态
import multiprocessing
import time
def slow_worker():
print 'Starting worker'
time.sleep(0.1)
print 'Finished worker'
if __name__ == '__main__':
p = multiprocessing.Process(target=slow_worker)
print 'BEFORE:', p, p.is_alive()
p.start()
print 'DURING:', p, p.is_alive()
p.terminate()
print 'TERMINATED:', p, p.is_alive()
p.join()
print 'JOINED:', p, p.is_alive()
import multiprocessing
import sys
import time
def exit_error():
sys.exit(1)
def exit_ok():
return
def return_value():
return 1
def raises():
raise RuntimeError('There was an error!')
def terminated():
time.sleep(3)
if __name__ == '__main__':
jobs = []
for f in [exit_error, exit_ok, return_value, raises, terminated]:
print 'Starting process for', f.func_name
j = multiprocessing.Process(target=f, name=f.func_name)
jobs.append(j)
j.start()
jobs[-1].terminate()
for j in jobs:
j.join()
print '%15s.exitcode = %s' % (j.name, j.exitcode)
方便的调试,可以用logging
import multiprocessing
import logging
import sys
def worker():
print 'Doing some work'
sys.stdout.flush()
if __name__ == '__main__':
multiprocessing.log_to_stderr()
logger = multiprocessing.get_logger()
logger.setLevel(logging.INFO)
p = multiprocessing.Process(target=worker)
p.start()
p.join()
利用class来创建进程,定制子类
import multiprocessing
class Worker(multiprocessing.Process):
def run(self):
print 'In %s' % self.name
return
if __name__ == '__main__':
jobs = []
for i in range(5):
p = Worker()
jobs.append(p)
p.start()
for j in jobs:
j.join()
这一块我之前结合SocketServer写过一点,见Python多进程
一般的情况是Queue来传递。
import multiprocessing
class MyFancyClass(object):
def __init__(self, name):
self.name = name
def do_something(self):
proc_name = multiprocessing.current_process().name
print 'Doing something fancy in %s for %s!' % \
(proc_name, self.name)
def worker(q):
obj = q.get()
obj.do_something()
if __name__ == '__main__':
queue = multiprocessing.Queue()
p = multiprocessing.Process(target=worker, args=(queue,))
p.start()
queue.put(MyFancyClass('Fancy Dan'))
# Wait for the worker to finish
queue.close()
queue.join_thread()
p.join()
import multiprocessing
import time
class Consumer(multiprocessing.Process):
def __init__(self, task_queue, result_queue):
multiprocessing.Process.__init__(self)
self.task_queue = task_queue
self.result_queue = result_queue
def run(self):
proc_name = self.name
while True:
next_task = self.task_queue.get()
if next_task is None:
# Poison pill means shutdown
print '%s: Exiting' % proc_name
self.task_queue.task_done()
break
print '%s: %s' % (proc_name, next_task)
answer = next_task()
self.task_queue.task_done()
self.result_queue.put(answer)
return
class Task(object):
def __init__(self, a, b):
self.a = a
self.b = b
def __call__(self):
time.sleep(0.1) # pretend to take some time to do the work
return '%s * %s = %s' % (self.a, self.b, self.a * self.b)
def __str__(self):
return '%s * %s' % (self.a, self.b)
if __name__ == '__main__':
# Establish communication queues
tasks = multiprocessing.JoinableQueue()
results = multiprocessing.Queue()
# Start consumers
num_consumers = multiprocessing.cpu_count() * 2
print 'Creating %d consumers' % num_consumers
consumers = [ Consumer(tasks, results)
for i in xrange(num_consumers) ]
for w in consumers:
w.start()
# Enqueue jobs
num_jobs = 10
for i in xrange(num_jobs):
tasks.put(Task(i, i))
# Add a poison pill for each consumer
for i in xrange(num_consumers):
tasks.put(None)
# Wait for all of the tasks to finish
tasks.join()
# Start printing results
while num_jobs:
result = results.get()
print 'Result:', result
num_jobs -= 1
Event提供一种简单的方法,可以在进程间传递状态信息。事件可以切换设置和未设置状态。通过使用一个可选的超时值,时间对象的用户可以等待其状态从未设置变为设置。
import multiprocessing
import time
def wait_for_event(e):
"""Wait for the event to be set before doing anything"""
print 'wait_for_event: starting'
e.wait()
print 'wait_for_event: e.is_set()->', e.is_set()
def wait_for_event_timeout(e, t):
"""Wait t seconds and then timeout"""
print 'wait_for_event_timeout: starting'
e.wait(t)
print 'wait_for_event_timeout: e.is_set()->', e.is_set()
if __name__ == '__main__':
e = multiprocessing.Event()
w1 = multiprocessing.Process(name='block',
target=wait_for_event,
args=(e,))
w1.start()
w2 = multiprocessing.Process(name='nonblock',
target=wait_for_event_timeout,
args=(e, 2))
w2.start()
print 'main: waiting before calling Event.set()'
time.sleep(3)
e.set()
print 'main: event is set'
由于Python设计的限制(我说的是咱们常用的CPython)。最多只能用满1个CPU核心。
Python提供了非常好用的多进程包multiprocessing,你只需要定义一个函数,Python会替你完成其他所有事情。借助这个包,可以轻松完成从单进程到并发执行的转换。
1、新建单一进程
如果我们新建少量进程,可以如下:
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
if __name__ == "__main__":
p = multiprocessing.Process(target=func, args=("hello", ))
p.start()
p.join()
print "Sub-process done."
2、使用进程池(非阻塞)
是的,你没有看错,不是线程池。它可以让你跑满多核CPU,而且使用方法非常简单。
注意要用apply_async,如果落下async,就变成阻塞版本了。
processes=4是最多并发进程数量。
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
if __name__ == "__main__":
pool = multiprocessing.Pool(processes=4)
for i in xrange(10):
msg = "hello %d" %(i)
pool.apply_async(func, (msg, ))
pool.close()
pool.join()
print "Sub-process(es) done."
函数解释:
使用进程池(阻塞)
#coding: utf-8
import multiprocessing
import time
def func(msg):
print "msg:", msg
time.sleep(3)
print "end"
if __name__ == "__main__":
pool = multiprocessing.Pool(processes = 3)
for i in xrange(4):
msg = "hello %d" %(i)
pool.apply(func, (msg, )) #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去
print "Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~"
pool.close()
pool.join() #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
print "Sub-process(es) done."
3、使用Pool,并需要关注结果
更多的时候,我们不仅需要多进程执行,还需要关注每个进程的执行结果,如下:
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
return "done " + msg
if __name__ == "__main__":
pool = multiprocessing.Pool(processes=4)
result = []
for i in xrange(10):
msg = "hello %d" %(i)
result.append(pool.apply_async(func, (msg, )))
pool.close()
pool.join()
for res in result:
print res.get()
print "Sub-process(es) done."
示例
import multiprocessing
def do_calculation(data):
return data*2
def start_process():
print 'Starting', multiprocessing.current_process().name
if __name__ == '__main__':
inputs = list(range(10))
print 'Inputs :', inputs
builtin_output = map(do_calculation, inputs)
print 'Build-In :', builtin_output
pool_size = multiprocessing.cpu_count()*2
pool = multiprocessing.Pool(processes=pool_size, initializer=start_process,)
# 默认情况下,Pool会创建固定数目的工作进程,并向这些工作进程传递作业,直到再没有更多作业为止。
# maxtasksperchild参数为每个进程执行task的最大数目,
# 设置maxtasksperchild参数可以告诉池在完成一定数量任务之后重新启动一个工作进程,
# 来避免运行时间很长的工作进程消耗太多的系统资源。
# pool = multiprocessing.Pool(processes=pool_size, initializer=start_process, maxtasksperchild=2)
print '-' * 20
pool_outputs = pool.map(do_calculation, inputs)
pool.close()
pool.join()
print 'Pool :', pool_outputs
使用多个进程池
#coding: utf-8
import multiprocessing
import os, time, random
def Lee():
print "\nRun task Lee-%s" %(os.getpid()) #os.getpid()获取当前的进程的ID
start = time.time()
time.sleep(random.random() * 10) #random.random()随机生成0-1之间的小数
end = time.time()
print 'Task Lee, runs %0.2f seconds.' %(end - start)
def Marlon():
print "\nRun task Marlon-%s" %(os.getpid())
start = time.time()
time.sleep(random.random() * 40)
end=time.time()
print 'Task Marlon runs %0.2f seconds.' %(end - start)
def Allen():
print "\nRun task Allen-%s" %(os.getpid())
start = time.time()
time.sleep(random.random() * 30)
end = time.time()
print 'Task Allen runs %0.2f seconds.' %(end - start)
def Frank():
print "\nRun task Frank-%s" %(os.getpid())
start = time.time()
time.sleep(random.random() * 20)
end = time.time()
print 'Task Frank runs %0.2f seconds.' %(end - start)
if __name__=='__main__':
function_list= [Lee, Marlon, Allen, Frank]
print "parent process %s" %(os.getpid())
pool=multiprocessing.Pool(4)
for func in function_list:
pool.apply_async(func) #Pool执行函数,apply执行函数,当有一个进程执行完毕后,会添加一个新的进程到pool中
print 'Waiting for all subprocesses done...'
pool.close()
pool.join() #调用join之前,一定要先调用close() 函数,否则会出错, close()执行后不会有新的进程加入到pool,join函数等待素有子进程结束
print 'All subprocesses done.'
multiprocessing pool map
#coding: utf-8
import multiprocessing
def m1(x):
print x * x
if __name__ == '__main__':
pool = multiprocessing.Pool(multiprocessing.cpu_count())
i_list = range(8)
pool.map(m1, i_list)
#coding: utf-8
import multiprocessing
import logging
def create_logger(i):
print i
class CreateLogger(object):
def __init__(self, func):
self.func = func
if __name__ == '__main__':
ilist = range(10)
cl = CreateLogger(create_logger)
pool = multiprocessing.Pool(multiprocessing.cpu_count())
pool.map(cl.func, ilist)
print "hello------------>"
multiprocessing包是Python中的多进程管理包。它与 threading.Thread类似,可以利用multiprocessing.Process对象来创建一个进程。该进程可以允许放在Python程序内部编写的函数中。该Process对象与Thread对象的用法相同,拥有is_alive()、join([timeout])、run()、start()、terminate()等方法。属性有:authkey、daemon(要通过start()设置)、exitcode(进程在运行时为None、如果为–N,表示被信号N结束)、name、pid。此外multiprocessing包中也有Lock/Event/Semaphore/Condition类,用来同步进程,其用法也与threading包中的同名类一样。multiprocessing的很大一部份与threading使用同一套API,只不过换到了多进程的情境。
这个模块表示像线程一样管理进程,这个是multiprocessing的核心,它与threading很相似,对多核CPU的利用率会比threading好的多。
看一下Process类的构造方法:
__init__(self, group=None, target=None, name=None, args=(), kwargs={})
参数说明:
group:进程所属组。基本不用
target:表示调用对象。
args:表示调用对象的位置参数元组。
name:别名
kwargs:表示调用对象的字典。
创建进程的简单实例:
#coding=utf-8
import multiprocessing
def do(n) :
#获取当前线程的名字
name = multiprocessing.current_process().name
print name,'starting'
print "worker ", n
return
if __name__ == '__main__' :
numList = []
for i in xrange(5) :
p = multiprocessing.Process(target=do, args=(i,))
numList.append(p)
p.start()
p.join()
print "Process end."
执行结果:
Process-1 starting
worker 0
Process end.
Process-2 starting
worker 1
Process end.
Process-3 starting
worker 2
Process end.
Process-4 starting
worker 3
Process end.
Process-5 starting
worker 4
Process end.
创建子进程时,只需要传入一个执行函数和函数的参数,创建一个Process实例,并用其start()方法启动,这样创建进程比fork()还要简单。
join()方法表示等待子进程结束以后再继续往下运行,通常用于进程间的同步。
注意:
在Windows上要想使用进程模块,就必须把有关进程的代码写在当前.py文件的if __name__ == ‘__main__’ :语句的下面,才能正常使用Windows下的进程模块。Unix/Linux下则不需要。
在使用Python进行系统管理时,特别是同时操作多个文件目录或者远程控制多台主机,并行操作可以节约大量的时间。如果操作的对象数目不大时,还可以直接使用Process类动态的生成多个进程,十几个还好,但是如果上百个甚至更多,那手动去限制进程数量就显得特别的繁琐,此时进程池就派上用场了。
Pool类可以提供指定数量的进程供用户调用,当有新的请求提交到Pool中时,如果池还没有满,就会创建一个新的进程来执行请求。如果池满,请求就会告知先等待,直到池中有进程结束,才会创建新的进程来执行这些请求。
Pool类描述了一个工作进程池,他有几种不同的方法让任务卸载工作进程。 进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程,如果进程池序列中没有可供使用的进进程,那么程序就会等待,直到进程池中有可用进程为止。我们可以用Pool类创建一个进程池,展开提交的任务给进程池。
一个进程池对象可以控制工作进程池的哪些工作可以被提交,它支持超时和回调的异步结果,有一个类似map的实现。
processes : 使用的工作进程的数量,如果processes是None那么使用os.cpu_count()返回的数量。
initializer: 如果initializer是None,那么每一个工作进程在开始的时候会调用initializer(*initargs)。
maxtasksperchild:工作进程退出之前可以完成的任务数,完成后用一个心的工作进程来替代原进程,来让闲置的资源被释放。
maxtasksperchild默认是None,意味着只要Pool存在工作进程就会一直存活。
context: 用在制定工作进程启动时的上下文,一般使用multiprocessing.Pool() 或者一个context对象的Pool()方法来创建一个池,两种方法都适当的设置了context
注意:Pool对象的方法只可以被创建pool的进程所调用。
下面介绍一下multiprocessing 模块下的Pool类下的几个方法
进程池的方法
apply(func[, args[, kwds]]) :使用arg和kwds参数调用func函数,结果返回前会一直阻塞,
由于这个原因,apply_async()更适合并发执行,另外,func函数仅被pool中的一个进程运行。
apply_async(func[, args[, kwds[, callback[, error_callback]]]]) :
apply()方法的一个变体,会返回一个结果对象。
如果callback被指定,那么callback可以接收一个参数然后被调用,当结果准备好回调时会调用callback,
调用失败时,则用error_callback替换callback。 Callbacks应被立即完成,否则处理结果的线程会被阻塞。
close() : 阻止更多的任务提交到pool,待任务完成后,工作进程会退出。
terminate() :不管任务是否完成,立即停止工作进程。在对pool对象进程垃圾回收的时候,会立即调用terminate()。
join() : wait工作线程的退出,在调用join()前,必须调用close() or terminate()。
这样是因为被终止的进程需要被父进程调用wait(join等价与wait),否则进程会成为僵尸进程。
map(func, iterable[, chunksize])
map_async(func, iterable[, chunksize[, callback[, error_callback]]])
imap(func, iterable[, chunksize])
imap_unordered(func, iterable[, chunksize])
starmap(func, iterable[, chunksize])
starmap_async(func, iterable[, chunksize[, callback[, error_back]]])
函数原型:
apply(func[, args=()[, kwds={}]])
该函数用于传递不定参数,主进程会被阻塞直到函数执行结束(不建议使用,并且3.x以后不在出现)。
apply 方法 示例
# apply
from multiprocessing import Pool
import time
def f1(arg):
time.sleep(0.5)
print(arg)
return arg + 100
if __name__ == "__main__":
pool = Pool(5)
for i in range(1, 10):
pool.apply(func=f1, args=(i,))
函数原型:
apply_async(func[, args=()[, kwds={}[, callback=None]]])
与apply用法一样,但它是非阻塞且支持结果返回进行回调。
apply_async 方法 示例
# apply_async
from multiprocessing import Pool
def f1(i):
time.sleep(1)
print(i)
return i + 100
def f2(arg):
print(arg)
if __name__ == "__main__":
pool = Pool(5)
for i in range(1, 10):
pool.apply_async(func=f1, args=(i,), callback=f2)
pool.close()
pool.join()
函数原型:
map(func, iterable[, chunksize=None])
Pool类中的map方法,与内置的map函数用法行为基本一致,它会使进程阻塞直到返回结果。
注意,虽然第二个参数是一个迭代器,但在实际使用中,必须在整个队列都就绪后,程序才会运行子进程。
关闭进程池(pool),使其不在接受新的任务。
结束工作进程,不在处理未处理的任务。
主进程阻塞等待子进程的退出,join方法必须在close或terminate之后使用。
multiprocessing.Pool类的实例:
import time
from multiprocessing import Pool
def run(fn):
#fn: 函数参数是数据列表的一个元素
time.sleep(1)
return fn*fn
if __name__ == "__main__":
testFL = [1,2,3,4,5,6]
print 'shunxu:' #顺序执行(也就是串行执行,单进程)
s = time.time()
for fn in testFL:
run(fn)
e1 = time.time()
print "顺序执行时间:", int(e1 - s)
print 'concurrent:' #创建多个进程,并行执行
pool = Pool(5) #创建拥有5个进程数量的进程池
#testFL:要处理的数据列表,run:处理testFL列表中数据的函数
rl =pool.map(run, testFL)
pool.close()#关闭进程池,不再接受新的进程
pool.join()#主进程阻塞等待子进程的退出
e2 = time.time()
print "并行执行时间:", int(e2-e1)
print rl
执行结果:
shunxu:
顺序执行时间: 6
concurrent:
并行执行时间: 2
[1, 4, 9, 16, 25, 36]
上例是一个创建多个进程并发处理与顺序执行处理同一数据,所用时间的差别。从结果可以看出,并发执行的时间明显比顺序执行要快很多,但是进程是要耗资源的,所以平时工作中,进程数也不能开太大。
程序中的r1表示全部进程执行结束后全局的返回结果集,run函数有返回值,所以一个进程对应一个返回结果,这个结果存在一个列表中,也就是一个结果堆中,实际上是用了队列的原理,等待所有进程都执行完毕,就返回这个列表(列表的顺序不定)。
对Pool对象调用join()方法会等待所有子进程执行完毕,调用join()之前必须先调用close(),让其不再接受新的Process了。
再看一个实例:
import time
from multiprocessing import Pool
def run(fn) :
time.sleep(2)
print fn
if __name__ == "__main__" :
startTime = time.time()
testFL = [1,2,3,4,5]
pool = Pool(10)#可以同时跑10个进程
pool.map(run,testFL)
pool.close()
pool.join()
endTime = time.time()
print "time :", endTime - startTime
执行结果:
21
3
4
5
time : 2.51999998093
再次执行结果如下:
1
34
2
5
time : 2.48600006104
结果中为什么还有空行和没有折行的数据呢?其实这跟进程调度有关,当有多个进程并行执行时,每个进程得到的时间片时间不一样,哪个进程接受哪个请求以及执行完成时间都是不定的,所以会出现输出乱序的情况。那为什么又会有没这行和空行的情况呢?因为有可能在执行第一个进程时,刚要打印换行符时,切换到另一个进程,这样就极有可能两个数字打印到同一行,并且再次切换回第一个进程时会打印一个换行符,所以就会出现空行的情况。
并行处理某个目录下文件中的字符个数和行数,存入res.txt文件中,
每个文件一行,格式为:filename:lineNumber,charNumber
import os
import time
from multiprocessing import Pool
def getFile(path) :
#获取目录下的文件list
fileList = []
for root, dirs, files in list(os.walk(path)) :
for i in files :
if i.endswith('.txt') or i.endswith('.10w') :
fileList.append(root + "\\" + i)
return fileList
def operFile(filePath) :
#统计每个文件中行数和字符数,并返回
filePath = filePath
fp = open(filePath)
content = fp.readlines()
fp.close()
lines = len(content)
alphaNum = 0
for i in content :
alphaNum += len(i.strip('\n'))
return lines,alphaNum,filePath
def out(list1, writeFilePath) :
#将统计结果写入结果文件中
fileLines = 0
charNum = 0
fp = open(writeFilePath,'a')
for i in list1 :
fp.write(i[2] + " 行数:"+ str(i[0]) + " 字符数:"+str(i[1]) + "\n")
fileLines += i[0]
charNum += i[1]
fp.close()
print fileLines, charNum
if __name__ == "__main__":
#创建多个进程去统计目录中所有文件的行数和字符数
startTime = time.time()
filePath = "C:\\wcx\\a"
fileList = getFile(filePath)
pool = Pool(5)
resultList =pool.map(operFile, fileList)
pool.close()
pool.join()
writeFilePath = "c:\\wcx\\res.txt"
print resultList
out(resultList, writeFilePath)
endTime = time.time()
print "used time is ", endTime - startTime
执行结果:
耗时不到1秒,可见多进程并发执行速度是很快的。
我们已经见过了使用subprocess包来创建子进程,但这个包有两个很大的局限性:
1) 我们总是让subprocess运行外部的程序,而不是运行一个Python脚本内部编写的函数。
2) 进程间只通过管道进行文本交流。以上限制了我们将subprocess包应用到更广泛的多进程任务。
(这样的比较实际是不公平的,因为subprocessing本身就是设计成为一个shell,而不是一个多进程管理包)
(请尽量先阅读Python多线程与同步)
multiprocessing包是Python中的多进程管理包。与threading.Thread类似,它可以利用multiprocessing.Process对象来创建一个进程。该进程可以运行在Python程序内部编写的函数。该Process对象与Thread对象的用法相同,也有start(), run(), join()的方法。此外multiprocessing包中也有Lock/Event/Semaphore/Condition类 (这些对象可以像多线程那样,通过参数传递给各个进程),用以同步进程,其用法与threading包中的同名类一致。所以,multiprocessing的很大一部份与threading使用同一套API,只不过换到了多进程的情境。
但在使用这些共享API的时候,我们要注意以下几点:
Process.PID中保存有PID,如果进程还没有start(),则PID为None。
我们可以从下面的程序中看到Thread对象和Process对象在使用上的相似性与结果上的不同。各个线程和进程都做一件事:打印PID。但问题是,所有的任务在打印的时候都会向同一个标准输出(stdout)输出。这样输出的字符会混合在一起,无法阅读。使用Lock同步,在一个任务输出完成之后,再允许另一个任务输出,可以避免多个任务同时向终端输出。
# Similarity and difference of multi thread vs. multi process
# Written by Vamei
import os
import threading
import multiprocessing
# worker function
def worker(sign, lock):
lock.acquire()
print(sign, os.getpid())
lock.release()
# Main
print('Main:',os.getpid())
# Multi-thread
record = []
lock = threading.Lock()
for i in range(5):
thread = threading.Thread(target=worker,args=('thread',lock))
thread.start()
record.append(thread)
for thread in record:
thread.join()
# Multi-process
record = []
lock = multiprocessing.Lock()
for i in range(5):
process = multiprocessing.Process(target=worker,args=('process',lock))
process.start()
record.append(process)
for process in record:
process.join()
所有Thread的PID都与主程序相同,而每个Process都有一个不同的PID。
(练习: 使用mutiprocessing包将Python多线程与同步中的多线程程序更改为多进程程序)
正如我们在Linux多线程中介绍的管道PIPE和消息队列message queue,multiprocessing包中有Pipe类和Queue类来分别支持这两种IPC机制。Pipe和Queue可以用来传送常见的对象。
1) Pipe可以是单向(half-duplex),也可以是双向(duplex)。我们通过mutiprocessing.Pipe(duplex=False)创建单向管道 (默认为双向)。一个进程从PIPE一端输入对象,然后被PIPE另一端的进程接收,单向管道只允许管道一端的进程输入,而双向管道则允许从两端输入。
下面的程序展示了Pipe的使用:
# Multiprocessing with Pipe
# Written by Vamei
import multiprocessing as mul
def proc1(pipe):
pipe.send('hello')
print('proc1 rec:',pipe.recv())
def proc2(pipe):
print('proc2 rec:',pipe.recv())
pipe.send('hello, too')
# Build a pipe
pipe = mul.Pipe()
# Pass an end of the pipe to process 1
p1 = mul.Process(target=proc1, args=(pipe[0],))
# Pass the other end of the pipe to process 2
p2 = mul.Process(target=proc2, args=(pipe[1],))
p1.start()
p2.start()
p1.join()
p2.join()
这里的Pipe是双向的。
Pipe对象建立的时候,返回一个含有两个元素的表,每个元素代表Pipe的一端(Connection对象)。我们对Pipe的某一端调用send()方法来传送对象,在另一端使用recv()来接收。
2) Queue与Pipe相类似,都是先进先出的结构。但Queue允许多个进程放入,多个进程从队列取出对象。Queue使用mutiprocessing.Queue(maxsize)创建,maxsize表示队列中可以存放对象的最大数量。
下面的程序展示了Queue的使用:
# Written by Vamei
import os
import multiprocessing
import time
#==================
# input worker
def inputQ(queue):
info = str(os.getpid()) + '(put):' + str(time.time())
queue.put(info)
# output worker
def outputQ(queue,lock):
info = queue.get()
lock.acquire()
print (str(os.getpid()) + '(get):' + info)
lock.release()
#===================
# Main
record1 = [] # store input processes
record2 = [] # store output processes
lock = multiprocessing.Lock() # To prevent messy print
queue = multiprocessing.Queue(3)
# input processes
for i in range(10):
process = multiprocessing.Process(target=inputQ,args=(queue,))
process.start()
record1.append(process)
# output processes
for i in range(10):
process = multiprocessing.Process(target=outputQ,args=(queue,lock))
process.start()
record2.append(process)
for p in record1:
p.join()
queue.close() # No more object will come, close the queue
for p in record2:
p.join()
一些进程使用put()在Queue中放入字符串,这个字符串中包含PID和时间。另一些进程从Queue中取出,并打印自己的PID以及get()的字符串
进程池 (Process Pool)可以创建多个进程。这些进程就像是随时待命的士兵,准备执行任务(程序)。一个进程池中可以容纳多个待命的士兵。
比如下面的程序:
import multiprocessing as mul
def f(x):
return x**2
pool = mul.Pool(5)
rel = pool.map(f,[1,2,3,4,5,6,7,8,9,10])
print(rel)
我们创建了一个容许5个进程的进程池 (Process Pool) 。Pool运行的每个进程都执行f()函数。我们利用map()方法,将f()函数作用到表的每个元素上。这与built-in的map()函数类似,只是这里用5个进程并行处理。如果进程运行结束后,还有需要处理的元素,那么的进程会被用于重新运行f()函数。除了map()方法外,Pool还有下面的常用方法。
apply_async(func,args) 从进程池中取出一个进程执行func,args为func的参数。它将返回一个AsyncResult的对象,你可以对该对象调用get()方法以获得结果。
close() 进程池不再创建新的进程
join() wait进程池中的全部进程。必须对Pool先调用close()方法才能join。
练习
有下面一个文件download.txt。
www.sina.com.cn
www.163.com
www.iciba.com
www.cnblogs.com
www.qq.com
www.douban.com
使用包含3个进程的进程池下载文件中网站的首页。(你可以使用subprocess调用wget或者curl等下载工具执行具体的下载任务)
我们在Python多进程初步已经提到,我们应该尽量避免多进程共享资源。多进程共享资源必然会带来进程间相互竞争。而这种竞争又会造成race condition,我们的结果有可能被竞争的不确定性所影响。但如果需要,我们依然可以通过共享内存和Manager对象这么做。
共享内存
在Linux进程间通信中,我们已经讲述了共享内存(shared memory)的原理,这里给出用Python实现的例子:
# modified from official documentation
import multiprocessing
def f(n, a):
n.value = 3.14
a[0] = 5
num = multiprocessing.Value('d', 0.0)
arr = multiprocessing.Array('i', range(10))
p = multiprocessing.Process(target=f, args=(num, arr))
p.start()
p.join()
print num.value
print arr[:]
这里我们实际上只有主进程和Process对象代表的进程。我们在主进程的内存空间中创建共享的内存,也就是Value和Array两个对象。对象Value被设置成为双精度数(d), 并初始化为0.0。而Array则类似于C中的数组,有固定的类型(i, 也就是整数)。在Process进程中,我们修改了Value和Array对象。回到主程序,打印出结果,主程序也看到了两个对象的改变,说明资源确实在两个进程之间共享。
Manager
Manager对象类似于服务器与客户之间的通信 (server-client),与我们在Internet上的活动很类似。我们用一个进程作为服务器,建立Manager来真正存放资源。其它的进程可以通过参数传递或者根据地址来访问Manager,建立连接后,操作服务器上的资源。在防火墙允许的情况下,我们完全可以将Manager运用于多计算机,从而模仿了一个真实的网络情境。下面的例子中,我们对Manager的使用类似于shared memory,但可以共享更丰富的对象类型。
import multiprocessing
def f(x, arr, l):
x.value = 3.14
arr[0] = 5
l.append('Hello')
server = multiprocessing.Manager()
x = server.Value('d', 0.0)
arr = server.Array('i', range(10))
l = server.list()
proc = multiprocessing.Process(target=f, args=(x, arr, l))
proc.start()
proc.join()
print(x.value)
print(arr)
print(l)
Manager利用list()方法提供了表的共享方式。实际上你可以利用dict()来共享词典,Lock()来共享threading.Lock(注意,我们共享的是threading.Lock,而不是进程的mutiprocessing.Lock。后者本身已经实现了进程共享)等。 这样Manager就允许我们共享更多样的对象。