python多线程

目录

  • 进程和线程
    • 通俗解释
    • 没那么通俗的解释
    • 线程和进程的区别
  • python多进程
    • os系统调用
    • multiprocessing跨平台多进程模块
  • python多线程
    • Python解释器由于设计时有GIL全局锁,导致了多线程无法利用多核。多线程的并发在Python中就是一个美丽的梦。

进程和线程

通俗解释

现代操作系统比如Mac OS X,UNIX,Linux,Windows等,都是支持“多任务”的操作系统。

什么叫“多任务”呢?简单地说,就是操作系统可以同时运行多个任务。打个比方,你一边在用浏览器上网,一边在听MP3,一边在用Word赶作业,这就是多任务,至少同时有3个任务正在运行。还有很多任务悄悄地在后台同时运行着,只是桌面上没有显示而已。

现在,多核CPU已经非常普及了,但是,即使过去的单核CPU,也可以执行多任务。由于CPU执行代码都是顺序执行的,那么,单核CPU是怎么执行多任务的呢?

答案就是操作系统轮流让各个任务交替执行,任务1执行0.01秒,切换到任务2,任务2执行0.01秒,再切换到任务3,执行0.01秒……这样反复执行下去。表面上看,每个任务都是交替执行的,但是,由于CPU的执行速度实在是太快了,我们感觉就像所有任务都在同时执行一样。

真正的并行执行多任务只能在多核CPU上实现,但是,由于任务数量远远多于CPU的核心数量,所以,操作系统也会自动把很多任务轮流调度到每个核心上执行。

对于操作系统来说,一个任务就是一个进程(Process),比如打开一个浏览器就是启动一个浏览器进程,打开一个记事本就启动了一个记事本进程,打开两个记事本就启动了两个记事本进程,打开一个Word就启动了一个Word进程。

有些进程还不止同时干一件事,比如Word,它可以同时进行打字、拼写检查、打印等事情。在一个进程内部,要同时干多件事,就需要同时运行多个“子任务”,我们把进程内的这些“子任务”称为线程(Thread)。

由于每个进程至少要干一件事,所以,一个进程至少有一个线程。当然,像Word这种复杂的进程可以有多个线程,多个线程可以同时执行,多线程的执行方式和多进程是一样的,也是由操作系统在多个线程之间快速切换,让每个线程都短暂地交替运行,看起来就像同时执行一样。当然,真正地同时执行多线程需要多核CPU才可能实现。

我们前面编写的所有的Python程序,都是执行单任务的进程,也就是只有一个线程。如果我们要同时执行多个任务怎么办?

有两种解决方案:

一种是启动多个进程,每个进程虽然只有一个线程,但多个进程可以一块执行多个任务。

还有一种方法是启动一个进程,在一个进程内启动多个线程,这样,多个线程也可以一块执行多个任务。

当然还有第三种方法,就是启动多个进程,每个进程再启动多个线程,这样同时执行的任务就更多了,当然这种模型更复杂,实际很少采用。

总结一下就是,多任务的实现有3种方式:

多进程模式;
多线程模式;
多进程+多线程模式。

没那么通俗的解释

1、进程(process)

狭义定义:进程就是一段程序的执行过程。

广义定义:进程是一个具有一定独立功能的程序关于某个数据集合的一次运行活动。它是操作系统动态执行的基本单元,在传统的操作系统中,进程既是基本的分配单元,也是基本的执行单元。

简单的来讲进程的概念主要有两点:第一,进程是一个实体。每一个进程都有它自己的地址空间,一般情况下,包括文本区域(text region)、数据区域(data region)和堆栈(stack region)。文本区域存储处理器执行的代码;数据区域存储变量和进程执行期间使用的动态分配的内存;堆栈区域存储着活动过程调用的指令和本地变量。第二,进程是一个“执行中的程序”。程序是一个没有生命的实体,只有处理器赋予程序生命时,它才能成为一个活动的实体,我们称其为进程。

进程状态:进程有三个状态,就绪、运行和阻塞。就绪状态其实就是获取了出cpu外的所有资源,只要处理器分配资源就可以马上执行。就绪状态有排队序列什么的,排队原则不再赘述。运行态就是获得了处理器分配的资源,程序开始执行。阻塞态,当程序条件不够时候,需要等待条件满足时候才能执行,如等待i/o操作时候,此刻的状态就叫阻塞态。

虚拟内存机制为进程管理存储资源带来了种种好处,但是它也给进程带来了一些小麻烦,我们知道每个进程拥有独立的虚拟内存地址空间,看到一样的虚拟内地址空间视图,所以对不同的进程来说,一个相同的虚拟地址意味着不同的物理地址。我们知道CPU执行指令时采用了虚拟地址,对应一个特定的变量来说,它对应着一个特定的虚拟地址。这样带来的问题就是两个进程不能通过简单的共享变量的方式来进行进程间通信,也就是说进程不能通过直接共享内存的方式来进行进程间通信,只能采用信号,管道等方式来进行进程间通信。这样的效率肯定比直接共享内存的方式差

fork系统调用

操作系统利用fork系统调用来创建一个子进程。fork所创建的子进程会复制父进程的虚拟地址空间。
要理解“复制”和“共享”的区别,复制的意思是会真正在物理内存复制一份内容,会真正消耗新的物理内存。共享的意思是使用指针指向同一个地址,不会真正的消耗物理内存。理解这两个概念的区别很重要,这是进程和线程的根本区别之一。

2、程序

说起进程,就不得不说下程序。先看定义:程序是指令和数据的有序集合,其本身没有任何运行的含义,是一个静态的概念。而进程则是在处理机上的一次执行过程,它是一个动态的概念。这个不难理解,其实进程是包含程序的,进程的执行离不开程序,进程中的文本区域就是代码区,也就是程序。

3、线程

通常在一个进程中可以包含若干个线程,当然一个进程中至少有一个线程,不然没有存在的意义。线程可以利用进程所拥有的资源,在引入线程的操作系统中,通常都是把进程作为分配资源的基本单位,而把线程作为独立运行和独立调度的基本单位,由于线程比进程更小,基本上不拥有系统资源,故对它的调度所付出的开销就会小得多,能更高效的提高系统多个程序间并发执行的程度。

线程解决的最大问题就是它可以很简单地表示共享资源的问题,这里说的资源指的是存储器资源,资源最后都会加载到物理内存,一个进程的所有线程都是共享这个进程的同一个虚拟地址空间的,也就是说从线程的角度来说,它们看到的物理资源都是一样的,这样就可以通过共享变量的方式来表示共享资源,也就是直接共享内存的方式解决了线程通信的问题。而线程也表示一个独立的逻辑流,这样就完美解决了进程的一个大难题。

clone系统调用

在Linux系统中,线程是使用clone系统调用,clone是一个轻量级的fork,它提供了一系列的参数来表示线程可以共享父类的哪些资源,比如页表,打开文件表等等。我们上面说过了共享和复制的区别,共享只是简单地用指针指向同一个物理地址,不会在父进程之外开辟新的物理内存。
clone系统调用可以指定创建的线程开始执行代码位置。

4、多线程

在一个程序中,这些独立运行的程序片段叫作“线程”(Thread),利用它编程的概念就叫作“多线程处理”。多线程是为了同步完成多项任务,不是为了提高运行效率,而是为了提高资源使用效率来提高系统的效率。线程是在同一时间需要完成多项任务的时候实现的。

线程和进程的区别

进程和线程的主要差别在于它们是不同的操作系统资源管理方式。进程有独立的地址空间,一个进程崩溃后,在保护模式下不会对其它进程产生影响,而线程只是一个进程中的不同执行路径。线程有自己的堆栈和局部变量,但线程之间没有单独的地址空间,一个线程死掉就等于整个进程死掉,所以多进程的程序要比多线程的程序健壮,但在进程切换时,耗费资源较大,效率要差一些。但对于一些要求同时进行并且又要共享某些变量的并发操作,只能用线程,不能用进程。

  1. 简而言之,一个程序至少有一个进程,一个进程至少有一个线程.

  2. 线程的划分尺度小于进程,使得多线程程序的并发性高。

  3. 另外,进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。

  4. 线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。

  5. 从逻辑角度来看,多线程的意义在于一个应用程序中,有多个执行部分可以同时执行。但操作系统并没有将多个线程看做多个独立的应用,来实现进程的调度和管理以及资源分配。这就是进程和线程的重要区别。

  6. 线程和进程在使用上各有优缺点:线程执行开销小,但不利于资源的管理和保护;而进程正相反。同时,线程适合于在SMP(多核处理机)机器上运行,而进程则可以跨机器迁移。

python多进程

os系统调用

要让Python程序实现多进程(multiprocessing),我们先了解操作系统的相关知识。

Unix/Linux操作系统提供了一个fork()系统调用,它非常特殊。普通的函数调用,调用一次,返回一次,但是fork()调用一次,返回两次,因为操作系统自动把当前进程(称为父进程)复制了一份(称为子进程),然后,分别在父进程和子进程内返回。

子进程永远返回0,而父进程返回子进程的ID。这样做的理由是,一个父进程可以fork出很多子进程,所以,父进程要记下每个子进程的ID,而子进程只需要调用getppid()就可以拿到父进程的ID。

Python的os模块封装了常见的系统调用,其中就包括fork,可以在Python程序中轻松创建子进程:

import os

print('Process (%s) start...' % os.getpid())
# Only works on Unix/Linux/Mac:
pid = os.fork()
print('我被调用了')
if pid == 0:
    print('I am child process (%s) and my parent is %s.' % (os.getpid(), os.getppid()))
else:
    print('I (%s) just created a child process (%s).' % (os.getpid(), pid))
    
'''运行结果
Process (6666) start...
我被调用了
I (6666) just created a child process (6667).
我被调用了
I am child process (6667) and my parent is 6666.

有了fork调用,一个进程在接到新任务时就可以复制出一个子进程来处理新任务,常见的Apache服务器就是由父进程监听端口,每当有新的http请求时,就fork出子进程来处理新的http请求。

multiprocessing跨平台多进程模块

由于Windows没有fork调用,使用multiprocessing模块来实现跨平台版本的多进程。

Process
multiprocessing模块提供了一个Process类来代表一个进程对象,创建一个Process实例通过来创建子进程,只需要传入一个执行函数和函数的参数,用start()方法启动,这样创建进程比fork()还要简单。

join()方法可以等待子进程结束后再继续往下运行,通常用于进程间的同步。下面的例子演示了启动一个子进程并等待其结束:

from multiprocessing import Process
import os
# 子进程要执行的代码
def run_proc(name):
    print('Run child process %s (%s)...' % (name, os.getpid()))

if __name__=='__main__':
    print('Parent process %s.' % os.getpid())
    p = Process(target=run_proc, args=('test',))
    print('Child process will start.')
    p.start()
    p.join()
    print('Child process end.')
    
'''运行结果
Parent process 7064.
Child process will start.
Run child process test (7065)...
Child process end.
'''

Pool:
如果要启动大量的子进程,可以用进程池的方式批量创建子进程:

from multiprocessing import Pool
import os, time, random

def long_time_task(name):
    print('Run task %s (%s)...' % (name, os.getpid()))
    start = time.time()
    time.sleep(random.random() * 2)
    end = time.time()
    print('Task %s runs %0.2f seconds.' % (name, end-start))

if __name__ == '__main__':
    print('Parent process %s.' % os.getpid())
    p = Pool(3)
    for i in range(4):
        p.apply_async(long_time_task, args=(i,))
    print('Waiting for all subprocesses done...')
    p.close()
    p.join()
    print('All subprocesses done!')

'''
Parent process 7643.
Waiting for all subprocesses done...
Run task 0 (7644)...
Run task 1 (7645)...
Run task 2 (7646)...
Task 2 runs 0.05 seconds.
Run task 3 (7646)...
Task 0 runs 0.26 seconds.
Task 3 runs 0.87 seconds.
Task 1 runs 1.84 seconds.
All subprocesses done!
'''

代码解读:

对Pool对象调用join()方法会等待所有子进程执行完毕,调用join()之前必须先调用close(),调用close()之后就不能继续添加新的Process了。

请注意输出的结果,task 0,1,2是立刻执行的,而task 3要等待前面某个task完成后才执行,这是因为Pool的默认大小在我的电脑上是3,因此,最多同时执行3个进程。这是Pool有意设计的限制,并不是操作系统的限制。如果改成:

p = Pool(4)

就可以同时跑4个进程。

由于Pool的默认大小是CPU的核数,如果你拥有8核CPU,你要提交至少9个子进程才能看到上面的等待效果。

子进程subprocess
很多时候,子进程并不是自身,而是一个外部进程。我们创建了子进程后,还需要控制子进程的输入和输出。

subprocess模块可以让我们非常方便地启动一个子进程,然后控制其输入和输出。

下面的例子演示了如何在Python代码中运行命令nslookup www.python.org和命令ls,这和命令行直接运行的效果是一样的:

import subprocess

print('$ nslookup ww.python.org')
#nslookup 是域名解析命令
r = subprocess.call(['nslookup', 'www.pyhton.org'])
print('Exit code: ', r)

print('$ ls')
t = subprocess.call(['ls'])
print('Exit code: ', t)

'''
$ nslookup ww.python.org
Server:		127.0.1.1
Address:	127.0.1.1#53

Non-authoritative answer:
www.pyhton.org	canonical name = pyhton.org.
Name:	pyhton.org
Address: 69.16.230.42
Exit code:  0

$ ls
multiprocess.py
Exit code:  0
'''

如果子进程还需要输入,则可以通过communicate()方法输入:

import subprocess

print('$ nslookup')
p = subprocess.Popen(['nslookup'], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
output, err = p.communicate(b'set q=mx\npython.org\nexit\n')
print(output.decode('utf-8'))
print('Exit code:', p.returncode)
'''
运行结果如下:

$ nslookup
Server:        192.168.19.4
Address:    192.168.19.4#53

Non-authoritative answer:
python.org    mail exchanger = 50 mail.python.org.

Authoritative answers can be found from:
mail.python.org    internet address = 82.94.164.166
mail.python.org    has AAAA address 2001:888:2000:d::a6


Exit code: 0
'''

上面的代码相当于在命令行执行命令nslookup,然后手动输入:

set q=mx
python.org
exit

进程间通信
Process之间肯定是需要通信的,操作系统提供了很多机制来实现进程间的通信。Python的multiprocessing模块包装了底层的机制,提供了Queue、Pipes等多种方式来交换数据。

我们以Queue为例,在父进程中创建两个子进程,一个往Queue里写数据,一个从Queue里读数据:

from multiprocessing import Process, Queue
import os, time, random

# 写数据进程执行的代码:
def write(q):
    print('Process to write: %s' % os.getpid())
    for value in ['A', 'B', 'C']:
        print('Put %s to queue...' % value)
        q.put(value)
        time.sleep(random.random())

# 读数据进程执行的代码:
def read(q):
    print('Process to read: %s' % os.getpid())
    while True:
        value = q.get(True)
        print('Get %s from queue.' % value)

if __name__=='__main__':
    # 父进程创建Queue,并传给各个子进程:
    q = Queue()
    pw = Process(target=write, args=(q,))
    pr = Process(target=read, args=(q,))
    # 启动子进程pw,写入:
    pw.start()
    # 启动子进程pr,读取:
    pr.start()
    # 等待pw结束:
    pw.join()
    # pr进程里是死循环,无法等待其结束,只能强行终止:
    pr.terminate()
'''
Process to write: 10804
Put A to queue...
Process to read: 10805
Get A from queue.
Put B to queue...
Get B from queue.
Put C to queue...
Get C from queue.
'''

注意
在Unix/Linux下,multiprocessing模块封装了fork()调用,使我们不需要关注fork()的细节。由于Windows没有fork调用,因此,multiprocessing需要“模拟”出fork的效果,父进程所有Python对象都必须通过pickle序列化再传到子进程去,所有,如果multiprocessing在Windows下调用失败了,要先考虑是不是pickle失败了。

python多线程

多任务可以由多进程完成,也可以由一个进程内的多线程完成。

我们前面提到了进程是由若干线程组成的,一个进程至少有一个线程。

由于线程是操作系统直接支持的执行单元,因此,高级语言通常都内置多线程的支持,Python也不例外,并且,Python的线程是真正的Posix Thread,而不是模拟出来的线程。

threading
Python的标准库提供了两个模块:_thread和threading,_thread是低级模块,threading是高级模块,对_thread进行了封装。绝大多数情况下,我们只需要使用threading这个高级模块。

启动一个线程就是把一个函数传入并创建Thread实例,然后调用start()开始执行:

import time, threading

#新线程执行代码
def loop():
    print('thread %s is running...' % threading.current_thread().name)
    n = 0
    while n < 6:
        n += 1
        print('thread %s >>>  %s' % (threading.current_thread().name, n))
        time.sleep(2)
    print('thread %s ended...' % threading.current_thread().name)

if __name__ == '__main__':
    print('thread %s is running...' % threading.current_thread().name)
    th = threading.Thread(target=loop, name='LoopThread')
    th.start()
    th.join()
    print('thread %s ended.' % threading.current_thread().name)
'''
thread MainThread is running...
thread LoopThread is running...
thread LoopThread >>>  1
thread LoopThread >>>  2
thread LoopThread >>>  3
thread LoopThread >>>  4
thread LoopThread >>>  5
thread LoopThread >>>  6
thread LoopThread ended...
thread MainThread ended.
'''

由于任何进程默认就会启动一个线程,我们把该线程称为主线程,主线程又可以启动新的线程,Python的threading模块有个current_thread()函数,它永远返回当前线程的实例。主线程实例的名字叫MainThread,子线程的名字在创建时指定,我们用LoopThread命名子线程。名字仅仅在打印时用来显示,完全没有其他意义,如果不起名字Python就自动给线程命名为Thread-1,Thread-2……

Lock
多线程和多进程最大的不同在于,多进程中,同一个变量,各自有一份拷贝存在于每个进程中,互不影响,而多线程中,所有变量都由所有线程共享,所以,任何一个变量都可以被任何一个线程修改,因此,线程之间共享数据最大的危险在于多个线程同时改一个变量,把内容给改乱了。

来看看多个线程同时操作一个变量怎么把内容给改乱了:

import time, threading

# 假定这是你的银行存款:
balance = 0

def change_it(n):
    # 先存后取,结果应该为0:
    global balance
    balance = balance + n
    balance = balance - n

def run_thread(n):
    for i in range(100000):
        change_it(n)

t1 = threading.Thread(target=run_thread, args=(5,))
t2 = threading.Thread(target=run_thread, args=(8,))
t1.start()
t2.start()
t1.join()
t2.join()
print(balance)
'''
执行结果不确定
'''

我们定义了一个共享变量balance,初始值为0,并且启动两个线程,先存后取,理论上结果应该为0,但是,由于线程的调度是由操作系统决定的,当t1、t2交替执行时,只要循环次数足够多,balance的结果就不一定是0了。

原因是因为高级语言的一条语句在CPU执行时是若干条语句,即使一个简单的计算:

balance = balance + n

也分两步:

计算balance + n,存入临时变量中;
将临时变量的值赋给balance。
也就是可以看成:

x = balance + n
balance = x

由于x是局部变量,两个线程各自都有自己的x,当代码正常执行时:

初始值 balance = 0

t1: x1 = balance + 5 # x1 = 0 + 5 = 5
t1: balance = x1     # balance = 5
t1: x1 = balance - 5 # x1 = 5 - 5 = 0
t1: balance = x1     # balance = 0

t2: x2 = balance + 8 # x2 = 0 + 8 = 8
t2: balance = x2     # balance = 8
t2: x2 = balance - 8 # x2 = 8 - 8 = 0
t2: balance = x2     # balance = 0

结果 balance = 0
但是t1和t2是交替运行的,如果操作系统以下面的顺序执行t1、t2:

初始值 balance = 0

t1: x1 = balance + 5  # x1 = 0 + 5 = 5

t2: x2 = balance + 8  # x2 = 0 + 8 = 8
t2: balance = x2      # balance = 8

t1: balance = x1      # balance = 5
t1: x1 = balance - 5  # x1 = 5 - 5 = 0
t1: balance = x1      # balance = 0

t2: x2 = balance - 8  # x2 = 0 - 8 = -8
t2: balance = x2   # balance = -8

结果 balance = -8
究其原因,是因为修改balance需要多条语句,而执行这几条语句时,线程可能中断,从而导致多个线程把同一个对象的内容改乱了。

两个线程同时一存一取,就可能导致余额不对,你肯定不希望你的银行存款莫名其妙地变成了负数,所以,我们必须确保一个线程在修改balance的时候,别的线程一定不能改。

如果我们要确保balance计算正确,就要给change_it()上一把锁,当某个线程开始执行change_it()时,我们说,该线程因为获得了锁,因此其他线程不能同时执行change_it(),只能等待,直到锁被释放后,获得该锁以后才能改。由于锁只有一个,无论多少线程,同一时刻最多只有一个线程持有该锁,所以,不会造成修改的冲突。创建一个锁就是通过threading.Lock()来实现:


balance = 0
lock = threading.Lock()

def run_thread(n):
    for i in range(100000):
        # 先要获取锁:
        lock.acquire()
        try:
            # 放心地改吧:
            change_it(n)
        finally:
            # 改完了一定要释放锁:
            lock.release()

当多个线程同时执行lock.acquire()时,只有一个线程能成功地获取锁,然后继续执行代码,其他线程就继续等待直到获得锁为止。

获得锁的线程用完后一定要释放锁,否则那些苦苦等待锁的线程将永远等待下去,成为死线程。所以我们用try…finally来确保锁一定会被释放。

锁的好处就是确保了某段关键代码只能由一个线程从头到尾完整地执行,坏处当然也很多,首先是阻止了多线程并发执行,包含锁的某段代码实际上只能以单线程模式执行,效率就大大地下降了。其次,由于可以存在多个锁,不同的线程持有不同的锁,并试图获取对方持有的锁时,可能会造成死锁,导致多个线程全部挂起,既不能执行,也无法结束,只能靠操作系统强制终止。

Python解释器由于设计时有GIL全局锁,导致了多线程无法利用多核。多线程的并发在Python中就是一个美丽的梦。

Python语言和GIL解释器锁没有关系,它是在实现Python解析器(CPython)时所引入的一个概念,同样一段代码可以通过CPython,PyPy,Psyco等不同的Python执行环境来执行,然而因为CPython是大部分环境下默认的Python执行环境。所以在很多人的概念里CPython就是Python,也就想当然的把GIL归结为Python语言的缺陷,所有GIL并不是python的特性,仅仅是因为历史原因在Cpython解释器中难以移除。

GIL保证同一时刻只有一个线程执行代码,每个线程在执行过程中都要先获取GIL

线程释放GIL锁的情况: 在IO操作等可能会引起阻塞的system call之前,可以暂时释放GIL,但在执行完毕后,必须重新获取GIL Python 3.x使用计时器(执行时间达到阈值后,当前线程释放GIL)或Python 2.x,tickets计数达到100

Python使用多进程是可以利用多核的CPU资源的。
多线程爬取比单线程性能有提升,因为遇到IO阻塞会自动释放GIL锁

GIL只对计算密集型的程序有作用,对IO密集型的程序并没有影响,因为遇到IO阻塞会自动释放GIL锁

当需要执行计算密集型的程序时,可以选择:1.换解释器,2.扩展C语言,3.换多进程等方案

参考:
【1】https://www.liaoxuefeng.com/

你可能感兴趣的:(Python)