CVPR2018_Crafting a Toolchain for Image Restoration by Deep Reinforcement Learning

CVPR2018_Crafting a Toolchain for Image Restoration by Deep Reinforcement Learning

http://mmlab.ie.cuhk.edu.hk/projects/RL-Restore/

强化学习的入门介绍:https://blog.csdn.net/aliceyangxi1987/article/details/73327378

https://www.zhihu.com/question/41775291

 

 

CNN在low-level的问题处理前沿:

deblurring:   S. Nah, T. H. Kim, and K. M. Lee. Deep multi-scale convolutional
neural network for dynamic scene deblurring. In
CVPR, 2017.

J. Sun, W. Cao, Z. Xu, and J. Ponce. Learning a convolutional
neural network for non-uniform motion blur removal.
In CVPR, 2015.

L. Xu, X. Tao, and J. Jia. Inverse kernels for fast spatial
deconvolution. In ECCV, 2014.

denoising:  

Y. Chen,W. Yu, and T. Pock. On learning optimized reaction
diffusion processes for effective image restoration. In CVPR,
2015.

 

S. Lefkimmiatis. Non-local color image denoising with convolutional
neural networks. In CVPR, 2017.

 

Z. Wang, D. Liu, S. Chang, Q. Ling, Y. Yang, and T. S.
Huang. D3: Deep dual-domain based fast restoration of
JPEG-compressed images. In CVPR, 2016.

JPEG artifacts reduction:    

C. Dong, Y. Deng, C. C. Loy, and X. Tang. Compression artifacts
reduction by a deep convolutional network. In ICCV,
2015.

 

J. Guo and H. Chao. Building dual-domain representations
for compression artifacts reduction. In ECCV, 2016.

Z. Wang, D. Liu, S. Chang, Q. Ling, Y. Yang, and T. S.
Huang. D3: Deep dual-domain based fast restoration of
JPEG-compressed images. In CVPR, 2016.


super-resolution:       
 

C. Dong, C. C. Loy, K. He, and X. Tang. Image superresolution
using deep convolutional networks. TPAMI,
38(2):295–307, 2016.

 

T.-W. Hui, C. C. Loy, and X. Tang. Depth map superresolution
by deep multi-scale guidance. In ECCV, 2016.

 

J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image superresolution
using very deep convolutional networks. In CVPR,
2016.

J. Kim, J. Kwon Lee, and K. Mu Lee. Deeply-recursive
convolutional network for image super-resolution. In CVPR,
2016.

W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang. Deep
laplacian pyramid networks for fast and accurate superresolution.
In CVPR, 2017.

Y. Tai, J. Yang, and X. Liu. Image super-resolution via deep
recursive residual network. In CVPR, 2017.

Y. Tai, J. Yang, X. Liu, and C. Xu. Memnet: A persistent
memory network for image restoration. In ICCV, 2017.

X. Wang, K. Yu, C. Dong, and C. C. Loy. Recovering realistic
texture in image super-resolution by deep spatial feature
transform. In CVPR, 2018.

 

 

PSNR:

详细解释,读下面的链接:

http://www.360doc.com/content/16/0919/12/496343_591970301.shtml

 

独热码,在英文文献中称做 one-hot code, 直观来说就是有多少个状态就有多少比特,而且只有一个比特为1,其他全为0的一种码制,更加详细参加one_hot code(维基百科)。在机器学习中对于离散型的分类型的数据,需要对其进行数字化比如说性别这一属性,只能有男性或者女性或者其他这三种值,如何对这三个值进行数字化表达?一种简单的方式就是男性为0,女性为1,其他为2,这样做有什么问题?

   长短期记忆(Long-Short Term Memory, LSTM)是一种时间递归神经网络(RNN),论文首次发表于1997年。由于独特的设计结构,LSTM适合于处理和预测时间序列中间隔和延迟非常长的重要事件。

http://www.cnblogs.com/wangduo/p/6773601.html

转载于:https://www.cnblogs.com/captain-dl/p/9281616.html

你可能感兴趣的:(CVPR2018_Crafting a Toolchain for Image Restoration by Deep Reinforcement Learning)