HDU 6105 Gameia(博弈+二分匹配)

Gameia

Problem Description

Alice and Bob are playing a game called 'Gameia ? Gameia !'. The game goes like this :
0. There is a tree with all node unpainted initial.
1. Because Bob is the VIP player, so Bob has K chances to make a small change on the tree any time during the game if he wants, whether before or after Alice's action. These chances can be used together or separate, changes will happen in a flash. each change is defined as cut an edge on the tree.
2. Then the game starts, Alice and Bob take turns to paint an unpainted node, Alice go first, and then Bob.
3. In Alice's move, she can paint an unpainted node into white color.
4. In Bob's move, he can paint an unpainted node into black color, and what's more, all the other nodes which connects with the node directly will be painted or repainted into black color too, even if they are white color before.
5. When anybody can't make a move, the game stop, with all nodes painted of course. If they can find a node with white color, Alice win the game, otherwise Bob.
Given the tree initial, who will win the game if both players play optimally?

Input

The first line of the input gives the number of test cases T; T test cases follow.
Each case begins with one line with two integers N and K : the size of the tree and the max small changes that Bob can make.
The next line gives the information of the tree, nodes are marked from 1 to N, node 1 is the root, so the line contains N-1 numbers, the i-th of them give the farther node of the node i+1.

Limits
T≤100
1≤N≤500
0≤K≤500
1≤Pi≤i

Output

For each test case output one line denotes the answer.
If Alice can win, output "Alice" , otherwise "Bob".

Sample Input

2
2 1
1
3 1
1 2

Sample Output

Bob
Alice

Source

2017 Multi-University Training Contest - Team 6


题意:给出一颗n个结点的树,Alice先进行操作,选一个未染色的点将其染成白色,Bob的操作是选一个未染色的点将其染成黑色,并且和这个点直接连接的点也被强制染成黑色(无论这些直连点之前是否有颜色),Bob还可以任意去掉k条边,最后当所有点都有颜色的时游戏结束,如果有白色点则Alice赢,否则Bob赢。

题解: 

1. 如果原树不存在两两匹配的方案,Alice从树叶开始,每次都染树叶父节点,Bob被迫只能不断的染叶子,Bob退化成一般玩家,因为Bob做不做小动作都不会逆转局势,总会出现一个时间点Bob没办法跟上Alice的节奏而让Alice染到一个周围都已被染色的孤立点(因为原树不存在两两匹配的方案) - 2.如果原树存在两两匹配的方案,而且Bob的小动作次数也足以把原树分成两两的点对,那么Bob显然获胜。 

3. 如果原树存在两两匹配的方案,而Bob的小动作不足以把树分成两两的点对,Alice一定获胜,因为每次染某个叶子节点(该节点为其父节点的唯一子节点),Alice总能迫使Bob不断的做小动作以保证剩下的树不会出现奇数节点的树,且每次小动作割出一个点对(包含Alice刚染的点),最后有两种情况。 - 出现某个结点有>=2个子节点为叶子节点。Alice染这个点,Bob跟不上Alice的节奏,出现孤点,Ailice取胜 - 否则整个过程一定会持续到树被染光或者Bob被Alice掏空导致做不了小动作进而被迫割出一块size为奇数的子树(这棵树显然没办法两两匹配)而败北。


#include
#include
#include
#include
#include
#include
#include
#define INF 1e9
using namespace std;
vectorg[505];
int match[505];
bool vis[505];
int n;
bool dfs(int v)
{
    vis[v]=1;
    for(int i=0;i



你可能感兴趣的:(ACM)