博主链接
KMP算法是一种改进的字符串匹配算法,由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现,因此人们称它为克努特——莫里斯——普拉特操作(简称KMP算法)。KMP算法的关键是利用匹配失败后的信息,尽量减少模式串与主串的匹配次数以达到快速匹配的目的。具体实现就是实现一个next()函数,函数本身包含了模式串的局部匹配信息。时间复杂度O(m+n)。-----摘要搜狗百科
一.KMP算法求解什么类型问题
字符串匹配。给你两个字符串,寻找其中一个字符串是否包含另一个字符串,如果包含,返回包含的起始位置。 或者给你两个个字符串,查找一个字符串在另外一个字符串中出现了几次
如下面两个字符串:char *str = "BBC ABCDAB ABCDABCDABDE"; char *ptr = "ABCDABD";
1.
首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。
2.
因为B与A不匹配,搜索词再往后移。
3.
就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。
4.
接着比较字符串和搜索词的下一个字符,还是相同。
5.
直到字符串有一个字符,与搜索词对应的字符不相同为止。
6.
这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。
7.
一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。
8.
怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。
9.
已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:
移动位数 = 已匹配的字符数 - 对应的部分匹配值
因为 6 - 2 等于4,所以将搜索词向后移动4位。
10.
因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。
11.
因为空格与A不匹配,继续后移一位。
12.
逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。
13.
逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。
14.
下面介绍《部分匹配表》是如何产生的。
首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。
15.
"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,
- "A"的前缀和后缀都为空集,共有元素的长度为0;
- "AB"的前缀为[A],后缀为[B],共有元素的长度为0;
- "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;
- "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;
- "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;
- "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;
- "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。
16.
"部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。
/* Problem:HDU1005,POJ3461,HDU3764 Content:KMP详解 Author : Anoyer */ #include
using namespace std; const int maxn=10001; int next[maxn]; char s[maxn]; //主串 char p[maxn]; //模式串 int cnt=0; void prefix_next(int n){ //匹配模式串next数组 next[0]=0; //next[0]初始化为0,0表示不存在相同的最大前缀和最大后缀 int len=0; int i=1; while(i 0){ len=next[len-1]; } else{ next[i++]=len; } } } return; } void move_next(int n){ for(int i=n-1;i>0;i--){ next[i]=next[i-1]; } next[0]=-1; return; } void kmp_search(){ //kmp匹配和next数组步骤类似 int n=strlen(p); int m=strlen(s); prefix_next(n); move_next(n); int i=0; int j=0; while(i %d\n",++cnt,i-j); j=next[j]; } if(s[i]==p[j]){ i++; j++; } else{ j=next[j]; if(j==-1){ i++;j++; } } } if(cnt==0)cout<<"NO FOUD"< >s; cin>>p; kmp_search(); } 如果对代码不能完全理解,请观看视频详细讲解
优化代码,效率更高
/* Problem:HDU1005,POJ3461,HDU3764 Content:KMP详解 Author : Anoyer */ #include
#include #include using namespace std; char s[1000005],t[200000]; int slen,tlen; int nex[200000];//nex数组大小和短串一致 int ans,a,b,c,d,n,m; inline void get_nex() { int j=-1;//j初始化为-1 for (int i=0;i