https://www.luogu.org/problemnew/show/P1265
上面的洛谷链接就是一个欧几里得生成树,注意这道题目里面的第二个条件是不成立的!!!
就是给你n个包含x、y轴的坐标,将这些点连成最小生成树,如此生成树就是欧几里得生成树。我们的目的是记录最小生成树上的总的路径和。
接下来我就写下我自己求欧几里得最小生成树的一些历程:
1:kruskal行不行呢?对于这道题目不可以,因为是5005个点,那么要push进队列5005*5005-1条边,会MLE。开始自己打了一个kruskal就MLE了,难受。
2:然后那毫无疑问了,用prim。很多prim模板里面都是设一点为起点p,建立结构体。结构体里面存储的是一个点的序号以及这个点到源点p的最小距离,然后用优先队列进行维护。
3:但是最后我们要记录最小生成树上的路径和,该怎样处理呢?
4:和一般prim算法的区别:
两者虽然贪心的方式不同,但都是利用了MST性质,都是正确的。
#include
using namespace std;
#define inf 0x3f3f3f3f
#define ll long long
#define res register int
const int maxn=5005;
struct Node {
double x,y;
} node[maxn];
int N,vis[maxn];
double dis[maxn];
void init() {
cin>>N;
for(res i=1; i<=N; i++) {
scanf("%lf%lf",&node[i].x,&node[i].y);
dis[i]=inf;
}
}
double cal(int a,int b) {
return sqrt((double)(node[a].x-node[b].x)*(node[a].x-node[b].x)+(double)(node[a].y-node[b].y)*(node[a].y-node[b].y));
}
int main() {
init();
double len=0;
dis[1]=0;
for(int i=1; i<=N; i++) {
int minone,temp=inf;//minone记录的是当前没有被遍历过且dis最小的一个 (由MST性质)
for(int j=1; j<=N; j++)
if(!vis[j]&&temp>dis[j]) minone=j,temp=dis[j];
vis[minone]=1;
for(int j=1; j<=N; j++) {
double d=cal(minone,j);
if(d
你可能感兴趣的:(图论—最短路问题)
- Day 51 图论三
weixin_44647325
图论
第十一章:图论part03基础题目可以自己尝试做一做。https://www.programmercarl.com/kamacoder/0101.%E5%AD%A4%E5%B2%9B%E7%9A%84%E6%80%BB%E9%9D%A2%E7%A7%AF.html和上一题差不多,尝试自己做做https://www.programmercarl.com/kamacoder/0102.%E6%B2%8
- 图论练习题(存起来练)
Wuliwuliii
图论练习题
=============================以下是最小生成树+并查集======================================【HDU】1213HowManyTables基础并查集★1272小希的迷宫基础并查集★1325&&poj1308IsItATree?基础并查集★1856Moreisbetter基础并查集★1102ConstructingRoads基础最小生成
- 【HDOJ图论题集】【转】
aiyuneng5167
java人工智能
1=============================以下是最小生成树+并查集======================================2【HDU】31213HowManyTables基础并查集★41272小希的迷宫基础并查集★51325&&poj1308IsItATree?基础并查集★61856Moreisbetter基础并查集★71102ConstructingRoad
- 专题练习 图论
还是太年轻
【图论01】最短路StartTime:2018-01-0212:45:00EndTime:2018-01-2312:45:00ContestStatus:RunningCurrentSystemTime:2018-01-1214:39:34SolvedProblemIDTitleRatio(Accepted/Submitted)1001最短路51.85%(70/135)1002King46.67%
- 图论500题
Dillonh
迷之图论
PS:没找到这套题的原作者,非常感谢他的总结~最小生成树+并查集【HDU】1213HowManyTables基础并查集★1272小希的迷宫基础并查集★1325&&poj1308IsItATree?基础并查集★1856Moreisbetter基础并查集★1102ConstructingRoads基础最小生成树★1232畅通工程基础并查集★1233还是畅通工程基础最小生成树★1863畅通工程基础最小生
- 代码随想录 day62 第十一章 图论part11
TENET信条
图论python开发语言
第十一章:图论part11Floyd算法精讲Floyd算法代码很简单,但真正理解起原理还是需要花点功夫,大家在看代码的时候,会发现Floyd的代码很简单,甚至看一眼就背下来了,但我为了讲清楚原理,本篇还是花了大篇幅来讲解。https://www.programmercarl.com/kamacoder/0097.%E5%B0%8F%E6%98%8E%E9%80%9B%E5%85%AC%E5%9B%
- 【代码随想录训练营第42期 打卡总结 - 刷题记录】
逝去的秋风
代码随想录打卡总结
目录一、感受二、打卡内容数组:链表:哈希表:字符串:栈与队列:二叉树:回溯:贪心:动态规划:单调栈:图论:三、收尾一、感受先说说这两个月来代码随想录打卡刷题的感受吧。从一开始的数组二分双指针,到最后的图论最短路,难度可以说是在不断增加,但也确切感觉到了很大的收获。印象最深的就是回溯三部曲和动规五部曲了,可以说真的是让我真正理解了回溯的实现过程和动规的解题思路,受益匪浅。跟着训练营坚持打卡的这段日子
- day 59 第十一章:图论part09 dijkstra(堆优化版)精讲 Bellman_ford 算法精讲(补)
ZKang_不会过人
算法图论
任务日期:8.3题目一链接:47.参加科学大会(第六期模拟笔试)(kamacoder.com)思路:这么在n很大的时候,也有另一个思考维度,即:从边的数量出发。当n很大,边的数量也很多的时候(稠密图),那么上述解法没问题。但n很大,边的数量很小的时候(稀疏图),可以换成从边的角度来求最短路代码:#include#include#include#include#includeusingnamespa
- Day63_20250211_图论part7 prim算法|kruskal算法精讲
Yoyo25年秋招冲冲冲
代码随想录刷题记录图论算法深度优先数据结构java
Day63_20250211_图论part7prim算法|kruskal算法精讲prim算法【维护节点的集合】题目题目描述在世界的某个区域,有一些分散的神秘岛屿,每个岛屿上都有一种珍稀的资源或者宝藏。国王打算在这些岛屿上建公路,方便运输。不同岛屿之间,路途距离不同,国王希望你可以规划建公路的方案,如何可以以最短的总公路距离将所有岛屿联通起来(注意:这是一个无向图)。给定一张地图,其中包括了所有的岛
- day51 第十一章:图论part02
mvufi
图论深度优先算法
99.岛屿数量深搜每一块的上下左右都遍历过了之后,这块陆地就遍历完了。是深搜,不是广搜深搜:递归defdfs():if.....:终止条件dfs(子节点)directions=[[0,1],[1,0],[0,-1],[-1,0]]defdfs(grid,visited,x,y):ifgrid[x][y]==0orvisited[x][y]:returnvisited[x][y]=Trueforii
- Day60_补20250208_图论part5_并查集理论基础|寻找存在的路径
Yoyo25年秋招冲冲冲
代码随想录刷题记录图论java算法动态规划数据结构leetcode开发语言
Day60_20250208_图论part5_并查集理论基础|寻找存在的路径并查集理论基础明确并查集解决什么问题,代码如何写并查集作用:解决连通性问题。【当我们需要判断2个元素是否在同一个集合里的时候,要想到使用并查集】功能将2个元素添加到1个集合中判断2个元素在不在同一个结合原理将3个元素放在同一个集合里A,B,C连通,一维数组,father[A]=B;father[B]=C,因此A和B和C连通
- Day59_20250207_图论part4_110.字符串接龙|105.有向图的完全可达性|106.岛屿的周长
Yoyo25年秋招冲冲冲
代码随想录刷题记录图论算法java动态规划笔记数据结构开发语言
Day59_20250207_图论part4_110.字符串接龙|105.有向图的完全可达性|106.岛屿的周长110.字符串接龙题目题目描述字典strList中从字符串beginStr和endStr的转换序列是一个按下述规格形成的序列:序列中第一个字符串是beginStr。序列中最后一个字符串是endStr。每次转换只能改变一个字符。转换过程中的中间字符串必须是字典strList中的字符串。给你
- Day58_20250206_图论part3_101.孤岛的总面积|102.沉没孤岛|103.水流问题|104.建造最大岛屿
Yoyo25年秋招冲冲冲
代码随想录刷题记录图论深度优先算法数据结构javaleetcode动态规划
Day58_20250206_图论part3_101.孤岛的总面积|102.沉没孤岛|103.水流问题|104.建造最大岛屿101.孤岛的总面积题目题目描述给定一个由1(陆地)和0(水)组成的矩阵,岛屿指的是由水平或垂直方向上相邻的陆地单元格组成的区域,且完全被水域单元格包围。孤岛是那些位于矩阵内部、所有单元格都不接触边缘的岛屿。现在你需要计算所有孤岛的总面积,岛屿面积的计算方式为组成岛屿的陆地的
- 每日一知识:图的遍历算法(bfs+dfs),javascript实现
程序猿阿嘴
前端javascript每日一知识算法深度优先宽度优先
什么是图?在计算机中,图结构也是一种非常常见的数据结构。图论也是一个非常大的话题图结构是一种与树结构有些相似的数据结构。图论是数学的一个分支,并且,在数学的概念上,树是图的一种。图主要研究的目的是事物之间的关系,顶点代表事物,边代表两个事物间的关系。图在生活中的应用场景:人与人之间的关系(比如六度空间理论),地点之间的联系图(地图App,就是通过图来计算最短路径或最优路径)图的特点一组顶点:通常用
- 基于Dijkstra算法的最短路径求解与应用解析
徐浪老师
徐浪老师大讲堂算法服务器前端
标题:基于Dijkstra算法的最短路径求解与应用解析一、引言最短路径问题是图论中的一个经典问题,广泛应用于交通导航、网络路由、地图定位等多个领域。解决最短路径问题,能够帮助我们找到从一个起点到一个终点的最短路径,通常以路径的长度或权值总和为度量。在图的加权边上,最短路径问题尤其重要。Dijkstra算法作为解决单源最短路径问题的经典算法,以其较低的计算复杂度和稳定性,在实践中得到了广泛应用。Di
- 信息学奥赛一本通 2101:【23CSPJ普及组】旅游巴士(bus) | 洛谷 P9751 [CSP-J 2023] 旅游巴士
君义_noip
CSP/NOIP真题解答信息学奥赛一本通题解洛谷题解算法动态规划信息学奥赛
【题目链接】ybt2101:【23CSPJ普及组】旅游巴士(bus)洛谷P9751[CSP-J2023]旅游巴士【题目考点】1.图论:求最短路Dijkstra,SPFA2.动态规划3.二分答案4.图论:广搜BFS【解题思路】解法1:Dijkstra堆优化每个地点是一个顶点,每条道路是一条边,道路只能单向通行,该图是有向图。通过每条边用时都是1单位时间,那么该图是无权图。每条道路都有开放时刻a,也就
- 搜索与图论-------DFS与BFS与拓扑排序
尉迟黎烨
图论深度优先宽度优先
一.深度优先搜索(基于栈)适用:既可以在无向图中也可以在有向图思路:从根节点出发,每次遍历他的第一个孩子节点直到遍历到叶子节点,再退回到他的父亲节点,接着遍历父亲节点的其他孩子节点,如此重复,直到遍历完所有的节点。核心代码:intdfs(intu){ st[u]=true;//st[u]表示点u已经被遍历过 for(inti=h[u];i!=-1;i=ne[i]) { in
- 图论- DFS/BFS遍历
左灯右行的爱情
图论深度优先宽度优先
DFS/BFS遍历深度优先搜素(DFS)Vertex模版-遍历所有节点为什么成环会导致死循环呢临接矩阵和临接表版-遍历所有节点遍历所有路径-临接矩阵和临接表版广度优先搜索(BFS)不记录遍历步数的需要记录遍历步数的需要适配不同权重边的深度优先搜素(DFS)Vertex模版-遍历所有节点//多叉树节点classNode{intval;Listchildren;}//多叉树的遍历框架voidtrave
- 利用Python进行社交网络分析和图论算法实现
步入烟尘
python算法图论
本文已收录于《Python超入门指南全册》本专栏专门针对零基础和需要进阶提升的同学所准备的一套完整教学,从基础到精通不断进阶深入,后续还有实战项目,轻松应对面试,专栏订阅地址:https://blog.csdn.net/mrdeam/category_12647587.html优点:订阅限时19.9付费专栏,私信博主还可进入全栈VIP答疑群,作者优先解答机会(代码指导、远程服务),群里大佬众多可以
- spfa判负环
Tom Marvolo
算法基础·搜索与图论·最短路
大雪菜的课(笔记)搜索与图论(二)1.最短路(5).spfa判负环模板(spfa判断图中是否存在负环——模板题AcWing852.spfa判断负环)时间复杂度是O(nm)O(nm),nn表示点数,mm表示边数intn;//总点数inth[N],w[N],e[N],ne[N],idx;//邻接表存储所有边intdist[N],cnt[N];//dist[x]存储1号点到x的最短距离,cnt[x]存储
- 图论 —— SPFA 模板
努力的老周
OI笔记算法模板笔记图论算法数据结构SPFA算法
概述本文使用优先队列优化的SPFA算法。时间复杂度一般为O(m)O(m)O(m),最坏为O
- 图论——spfa判负环
0x7F7F7F7F
图论算法
负环图GGG中存在一个回路,该回路边权之和为负数,称之为负环。spfa求负环方法1:统计每个点入队次数,如果某个点入队n次,说明存在负环。证明:一个点入队n次,即被更新了n次。一个点每次被更新时所对应最短路的边数一定是递增的,也正因此该点被更新n次那么该点对应的的最短路长度一定大于等于n,即路径上点的个数至少为n+1。根据抽屉原理,路径中至少有一个顶点出现两次,也就是路径中存在环路。而算法保证只有
- 图论复习第二章
sinat_40210730
期末复习图论
最短路径问题针对最短路网络(带权有向无环图)存在性:如果s到v的途径上包含负费用有向圈,则不存在最短s-v途径,否则存在最短s-v简单路最优性原理(最优子结构特征):若图G不存在非负有向圈,则任意最短子路也是相应点对之间的最短路三角不等式定理:d(v,w)指v到w的最短路径长度,则d(v,w)<=d(v,x)+d(x,w)最短路径算法函数方程(使用最优性原理所给出的关于最优解目标值之间的递归关系)
- 图论——最短路
IGP9
算法图论
图片来自Acwing平台本文主要内容:朴素Dijkstra算法堆优化Dijkstra算法Bellman-Ford算法SPFA算法Floyd算法1朴素Dijkstra算法主要功能:求没有负权边的图的单源最短路时间复杂度:o(n2)基本思路:假设存在一个集合s,集合中的所有节点的最短路距离已经被求解,并且存入到了dist[]中每次挑选集合外dist值最小的节点t加入集合s,用该点更新其他所以节点循环n
- 图神经网络实战(2)——图论基础
盼小辉丶
图神经网络从入门到项目实战神经网络图论图神经网络GNN
图神经网络实战(2)——图论基础0.前言1.图属性1.1有向图和无向图1.2加权图和非加权图1.3连通图和非连通图1.4其它图类型2.图概念2.1基本对象2.2图的度量指标2.2邻接矩阵表示法3.图算法3.1广度优先搜索3.2深度优先搜索小结系列链接0.前言图论(Graphtheory)是数学的一个基本分支,涉及对图研究。图是复杂数据结构的可视化表示,有助于理解不同实体之间的关系。图论提供了大量建
- 图论复习——最短路
Edward The Bunny
图论图论
知识点最短路径算法最短路径树每个点uuu的父亲为使uuu得到最短距离的前驱节点,若有多个,则取任意一个。题目CF449BJzzhuandCitiesBlogCF464ETheClassicProblemBlog[XSY3888]传送门对每个点uuu,记d(u)d(u)d(u)表示uuu到TTT的最短路,e(u)e(u)e(u)表示删掉它和最短路上父亲的边后的最短路。令dp(u)dp(u)dp(u)
- 算法初学者(DFS搜索)
KuaCpp
算法深度优先c++
搜索分为DFS(图论):深度优先搜索,是一种用于遍历或搜索树或图的算法,所谓优先,就是说每次都尝试向更深的节点走。在搜索算法中,该DFS常常指利用递归方便地实现暴力枚举的算法,与图论中的DFS算法有一定相似之处,但并不完全相同,通常是:构造一棵搜索树进行搜索。例题洛谷P1706思路:先定义洛谷数组,一个用于存放合法解,一个用来标记该数是否用过。我们可以先写一个用于打印的函数print(),每当深搜
- 备战CSP(1):复习图论之最短路算法SPFA
鹤上听雷
算法图论
接下来,我们将用这道题目来复习最短路算法,dijk和spfa。LuoguP3371【模板】单源最短路径(弱化版)题目背景本题测试数据为随机数据,在考试中可能会出现构造数据让SPFA不通过,如有需要请移步P4779。题目描述如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度。输入格式第一行包含三个整数n,m,sn,m,sn,m,s,分别表示点的个数、有向边的个数、出发点的编号。接下来mm
- 图论——floyd算法
0x7F7F7F7F
算法图论
acwing1125.牛的旅行1.先做一边floydfloydfloyd,求出每个点到其他各点的最短距离,得到dist[][]dist[][]dist[][]数组。2.求出maxd[]maxd[]maxd[]数组,存放每个点到可达点的距离最大值(遍历dist数组可得),遍历maxdmaxdmaxd可得到各个牧场内的最大的直径res1res1res1。3.连接两个不在同一牧场的点(i,j)(i,j)
- 搜索与图论复习1
KuaCpp
图论深度优先算法
1深度优先遍历DFS2宽度优先遍历BFS3树与图的存储4树与图的深度优先遍历5树与图的宽度优先遍历6拓扑排序1DFS:#includeusingnamespacestd;constintN=10;intn;intpath[N];boolst[N];voiddfs(intu){if(n==u){for(inti=0;i>n;dfs(0);return0;}acwing843#includeusing
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag