Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6
(1)大意:
给出一个数列a[1],a[2],a[3].a[n],我们的工作是计算这个子数列的最大和.例如,给出数列(6,-1,5,4,-7),那么这个数列的最大和就是6 + (-1) + 5 + 4 = 14.
(2)思路:
动态规划的思想,首先求出局部的最大和并保存起来,然后接下来就用本身和前面保存的最大和相比较,选出最大值,到最后就能得到结果。
(3)感想:
思路是有的,但是有思路缺兵也不一定能做对,因为有好多编译错误啥的,关键还是细节,注意容量数组大小,千万就是细节,动态规划千篇一路。
(4)
#include #include using namespace std; int main() { int i,ca=1,t,s,e,n,x,now,before,max; scanf("%d",&t); while(t--) { scanf("%d",&n); for(i=1;i<=n;i++) { scanf("%d",&now); if(i==1) { max=before=now; x=s=e=1; } else { if(now>now+before) { before=now; x=i; } else before+=now; } if(before>max) {max=before,s=x,e=i;} } printf("Case %d:\n%d %d %d\n",ca++,max,s,e); if(t) { printf("\n"); } } return 0; }