两阶段聚合(局部聚合+全局聚合)解决groupby产生数据倾斜的简单案例

1概述

有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性能会比期望差很多。数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作业的性能。该篇博客参考美团的spark高级版,只是修改了代码使用了scala写的。

2产生原因

**方案适用场景:**对RDD执行reduceByKey等聚合类shuffle算子或者在Spark SQL中使用group by语句进行分组聚合时,比较适用这种方案。

**方案实现思路:**这个方案的核心实现思路就是进行两阶段聚合。第一次是局部聚合,先给每个key都打上一个随机数,比如10以内的随机数,此时原先一样的key就变成不一样的了,比如(hello, 1) (hello, 1) (hello, 1) (hello, 1),就会变成(1_hello, 1) (1_hello, 1) (2_hello, 1) (2_hello, 1)。接着对打上随机数后的数据,执行reduceByKey等聚合操作,进行局部聚合,那么局部聚合结果,就会变成了(1_hello, 2) (2_hello, 2)。然后将各个key的前缀给去掉,就会变成(hello,2)(hello,2),再次进行全局聚合操作,就可以得到最终结果了,比如(hello, 4)。

**方案实现原理:**将原本相同的key通过附加随机前缀的方式,变成多个不同的key,就可以让原本被一个task处理的数据分散到多个task上去做局部聚合,进而解决单个task处理数据量过多的问题。接着去除掉随机前缀,再次进行全局聚合,就可以得到最终的结果。具体原理见下图。

**方案优点:**对于聚合类的shuffle操作导致的数据倾斜,效果是非常不错的。通常都可以解决掉数据倾斜,或者至少是大幅度缓解数据倾斜,将Spark作业的性能提升数倍以上。

**方案缺点:**仅仅适用于聚合类的shuffle操作,适用范围相对较窄。如果是join类的shuffle操作,还得用其他的解决方案。
两阶段聚合(局部聚合+全局聚合)解决groupby产生数据倾斜的简单案例_第1张图片

  • 代码
import org.apache.spark.{SparkConf, SparkContext}

import scala.util.Random

object Demo {
  def main(args: Array[String]): Unit = {

    val conf=new SparkConf().setAppName("Demo").setMaster("local[2]")
    val sc=new SparkContext(conf)

    //准备数据
    val array=new Array[Int](10000)
    for (i <-0 to 9999){
      array(i)=new Random().nextInt(10)
    }
    //array.foreach(x=>print(x+","))

    //生成一个rdd
    val rdd=sc.parallelize(array)
    //数据量很大就先取样
    //rdd.sample(false,0.1)
    
    //所有key加一操作
    val maprdd=rdd.map((_,1))
    //没有加随机前缀的结果
      maprdd.countByKey.foreach(print)
    //(0,976)(5,997)(1,966)(6,959)(9,1004)(2,1051)(7,973)(3,1036)(8,1022)(4,1016)

    //val wc=rdd.map(x=>(x,1)).reduceByKey(_+_)
    //wc.foreach(print)
    //(4,1016)(0,976)(6,959)(8,1022)(2,1051)(1,966)(3,1036)(7,973)(9,1004)(5,997)


    //两阶段聚合(局部聚合+全局聚合)处理数据倾斜

    //加随机前缀
	val prifixrdd=maprdd.map(x=>{
	   val prifix=new Random().nextInt(10)
	   (prifix+"_"+x._1,x._2)
	 })

    //加上随机前缀的key进行局部聚合
    val tmprdd=prifixrdd.reduceByKey(_+_)

    //去除随机前缀
    val newrdd=tmprdd.map(x=> (x._1.split("_")(1),x._2))

    //最终聚合
    newrdd.reduceByKey(_+_).foreach(print)

    //(4,1016)(7,973)(5,997)(9,1004)(8,1022)(6,959)(0,976)(3,1036)(2,1051)(1,966)
  }
}

你可能感兴趣的:(Spark)