九度oj-合唱队形

 

转载自:这位博主~

题目:

N位同学站成一排,音乐老师要请其中的(N-K)位同学出列,使得剩下的K位同学不交换位置就能排成合唱队形。合唱队形是指这样的一种队形:设K位同学从左到右依次编号为1, 2, …, K,他们的身高分别为T1, T2, …, TK,则他们的身高满足T1 < T2 < … < Ti , Ti > Ti+1 > … > TK (1 <= i <= K)。你的任务是,已知所有N位同学的身高,计算最少需要几位同学出列,可以使得剩下的同学排成合唱队形。

 

输入描述:

输入的第一行是一个整数N(2 <= N <= 100),表示同学的总数。

第一行有n个整数,用空格分隔,第i个整数Ti(130 <= Ti <= 230)是第i位同学的身高(厘米)。

 

输出描述:

可能包括多组测试数据,对于每组数据,输出包括一行,这一行只包含一个整数,就是最少需要几位同学出列。

 

示例1

输入:

8
186 186 150 200 160 130 197 220

输出:

4

解题思路:

动态规划博大精深!!首先这又是个求最长递增序列的问题,我们可以把问题分成两部分,首先是从起点到当前点递增,然后是当前点到末尾点递减。然后分别求出两部分的最长序列个数,结果就是总长度减去这两部分的和(其中注意当前点被计算了两次)。其中计算从当前点到末位点递减序列时,要利用末位点到当前点递增这个等价的条件,因为此时末尾点的状态在当前点的状态之前。注意求解过程中,思路一定要清晰!

#include 
#include
#include
using namespace std;
int a[110],f1[110],f2[110];
//f[i]=max(f[i],f[j]+1) 
int main(int argc, char** argv) {
	int n;
	scanf("%d",&n);
	for(int i=1;i<=n;i++) scanf("%d",&a[i]),f1[i]=1,f2[i]=1;
	int t1=1,t2=1,ans=0,num=-1;
	for(int i=1;i<=n;i++){
			for(int j=1;j=1;i--){
		for(int j=n;j>i;j--){
			if(a[j]

 

 

 

你可能感兴趣的:(九度oj)