scrapy的核心组件,post请求,日志、请求参数,中间件的UA池和selenium的应用

一.scrapy的核心组件

五大核心组件工作流程:

引擎(Scrapy)

  用来处理整个系统的数据流处理, 触发事务(框架核心)

调度器(Scheduler)

  用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址

下载器(Downloader)

  用于下载网页内容, 并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的)

爬虫(Spiders)

  爬虫是主要干活的, 用于从特定的网页中提取自己需要的信息, 即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面

项目管道(Pipeline)

  负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据。

二.scrapy的post请求

  爬虫文件中的爬虫类继承到了Spider父类中的start_requests(self)这个方法,该方法就可以对start_urls列表中的url发起请求

  def start_requests(self):
        for u in self.start_urls:
           yield scrapy.Request(url=u,callback=self.parse)
# -*- coding: utf-8 -*-
import scrapy


class PostSpider(scrapy.Spider):
    name = 'post'
    # allowed_domains = ['www.xxx.com']
    start_urls = ['https://fanyi.baidu.com/sug']

    def start_requests(self):
        data = {
            'kw':'dog'
        }
        for url in self.start_urls:
            yield scrapy.FormRequest(url=url,formdata=data,callback=self.parse)

    def parse(self, response):
        print(response.text)

三.scrapy的日志等级和请求参数

1.日志信息的种类

  ERROR: 一般错误

  WAENING: 警告

  INFO: 一般的信息

  DEBUG:调试信息

2.设置日志信息输出

  在setting.py配置文件中,加入

    LOG_LEVEL = "指定日志信息种类"

    LOG_FILE = "log.txt"

LOG_LEVEL = 'ERROR'
#LOG_FILE = './log.txt'

3.请求参数

示例:爬取www.id97.com电影网,将一级页面中的电影名称,类型,评分一级二级页面中的上映时间,导演,片长进行爬取。

  爬虫文件

import scrapy
from moviePro.items import MovieproItem

class MovieSpider(scrapy.Spider):
    name = 'movie'
    allowed_domains = ['www.id97.com']
    start_urls = ['http://www.id97.com/']

    def parse(self, response):
        div_list = response.xpath('//div[@class="col-xs-1-5 movie-item"]')

        for div in div_list:
            item = MovieproItem()
            item['name'] = div.xpath('.//h1/a/text()').extract_first()
            item['score'] = div.xpath('.//h1/em/text()').extract_first()
            #xpath(string(.))表示提取当前节点下所有子节点中的数据值(.)表示当前节点
            item['kind'] = div.xpath('.//div[@class="otherinfo"]').xpath('string(.)').extract_first()
            item['detail_url'] = div.xpath('./div/a/@href').extract_first()
            #请求二级详情页面,解析二级页面中的相应内容,通过meta参数进行Request的数据传递
            yield scrapy.Request(url=item['detail_url'],callback=self.parse_detail,meta={'item':item})

    def parse_detail(self,response):
        #通过response获取item
        item = response.meta['item']
        item['actor'] = response.xpath('//div[@class="row"]//table/tr[1]/a/text()').extract_first()
        item['time'] = response.xpath('//div[@class="row"]//table/tr[7]/td[2]/text()').extract_first()
        item['long'] = response.xpath('//div[@class="row"]//table/tr[8]/td[2]/text()').extract_first()
        #提交item到管道
        yield item

  items.py

import scrapy


class MovieproItem(scrapy.Item):
    # define the fields for your item here like:
    name = scrapy.Field()
    score = scrapy.Field()
    time = scrapy.Field()
    long = scrapy.Field()
    actor = scrapy.Field()
    kind = scrapy.Field()
    detail_url = scrapy.Field()

  管道文件

import json
class MovieproPipeline(object):
    def __init__(self):
        self.fp = open('data.txt','w')
    def process_item(self, item, spider):
        dic = dict(item)
        print(dic)
        json.dump(dic,self.fp,ensure_ascii=False)
        return item
    def close_spider(self,spider):
        self.fp.close()

4.如何提高scrapy的爬取效率

增加并发:
    默认scrapy开启的并发线程为32个,可以适当进行增加。在settings配置文件中修改CONCURRENT_REQUESTS = 100值为100,并发设置成了为100。

降低日志级别:
    在运行scrapy时,会有大量日志信息的输出,为了减少CPU的使用率。可以设置log输出信息为INFO或者ERROR即可。在配置文件中编写:LOG_LEVEL = ‘INFO’

禁止cookie:
    如果不是真的需要cookie,则在scrapy爬取数据时可以进制cookie从而减少CPU的使用率,提升爬取效率。在配置文件中编写:COOKIES_ENABLED = False

禁止重试:
    对失败的HTTP进行重新请求(重试)会减慢爬取速度,因此可以禁止重试。在配置文件中编写:RETRY_ENABLED = False

减少下载超时:
    如果对一个非常慢的链接进行爬取,减少下载超时可以能让卡住的链接快速被放弃,从而提升效率。在配置文件中进行编写:DOWNLOAD_TIMEOUT = 10 超时时间为10s

示例:爬取校花网校花图片 www.521609.com

  爬虫文件

import scrapy
from xiaohua.items import XiaohuaItem

class XiahuaSpider(scrapy.Spider):

    name = 'xiaohua'
    allowed_domains = ['www.521609.com']
    start_urls = ['http://www.521609.com/daxuemeinv/']

    pageNum = 1
    url = 'http://www.521609.com/daxuemeinv/list8%d.html'

    def parse(self, response):
        li_list = response.xpath('//div[@class="index_img list_center"]/ul/li')
        for li in li_list:
            school = li.xpath('./a/img/@alt').extract_first()
            img_url = li.xpath('./a/img/@src').extract_first()

            item = XiaohuaItem()
            item['school'] = school
            item['img_url'] = 'http://www.521609.com' + img_url

            yield item

        if self.pageNum < 10:
            self.pageNum += 1
            url = format(self.url % self.pageNum)
            #print(url)
            yield scrapy.Request(url=url,callback=self.parse)

  items.py

import scrapy


class XiaohuaItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    school=scrapy.Field()
    img_url=scrapy.Field()

  管道文件

import json
import os
import urllib.request
class XiaohuaPipeline(object):
    def __init__(self):
        self.fp = None

    def open_spider(self,spider):
        print('开始爬虫')
        self.fp = open('./xiaohua.txt','w')

    def download_img(self,item):
        url = item['img_url']
        fileName = item['school']+'.jpg'
        if not os.path.exists('./xiaohualib'):
            os.mkdir('./xiaohualib')
        filepath = os.path.join('./xiaohualib',fileName)
        urllib.request.urlretrieve(url,filepath)
        print(fileName+"下载成功")

    def process_item(self, item, spider):
        obj = dict(item)
        json_str = json.dumps(obj,ensure_ascii=False)
        self.fp.write(json_str+'\n')

        #下载图片
        self.download_img(item)
        return item

    def close_spider(self,spider):
        print('结束爬虫')
        self.fp.close()

  setting.py

USER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36'

# Obey robots.txt rules
ROBOTSTXT_OBEY = False

# Configure maximum concurrent requests performed by Scrapy (default: 16)
CONCURRENT_REQUESTS = 100
COOKIES_ENABLED = False
LOG_LEVEL = 'ERROR'
RETRY_ENABLED = False
DOWNLOAD_TIMEOUT = 3
# Configure a delay for requests for the same website (default: 0)
# See https://doc.scrapy.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
# The download delay setting will honor only one of:
#CONCURRENT_REQUESTS_PER_DOMAIN = 16
#CONCURRENT_REQUESTS_PER_IP = 16
DOWNLOAD_DELAY = 3

参考:https://www.cnblogs.com/bobo-zhang/p/10069004.html

四.scrapy中间件的UA池和代理池

1.中间件

下载中间件(Downloader Middlewares) 位于scrapy引擎和下载器之间的一层组件。

作用:

  引擎将请求传递给下载器过程中, 下载中间件可以对请求进行一系列处理

  在下载器完成将Response传递给引擎中,下载中间件可以对响应进行一系列处理

使用下载中间件处理请求,一般会对请求设置随机的User-Agent ,设置随机的代理。目的在于防止爬取网站的反爬虫策略。

2.UA池  (User-Agent池)

作用:

  尽可能多的将scrapy工程中的请求伪装成不同类型的浏览器身份

操作流程:

  在下载中间件中拦截请求

  将拦截到的请求的请求头信息中的UA进行篡改伪装

  在配置文件中开启下载中间件

from scrapy.contrib.downloadermiddleware.useragent import UserAgentMiddleware
import random
#UA池代码的编写(单独给UA池封装一个下载中间件的一个类)
class RandomUserAgent(UserAgentMiddleware):

    def process_request(self, request, spider):
        #从列表中随机抽选出一个ua值
        ua = random.choice(user_agent_list)
        #ua值进行当前拦截到请求的ua的写入操作
        request.headers.setdefault('User-Agent',ua)


user_agent_list = [
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 "
        "(KHTML, like Gecko) Chrome/22.0.1207.1 Safari/537.1",
        "Mozilla/5.0 (X11; CrOS i686 2268.111.0) AppleWebKit/536.11 "
        "(KHTML, like Gecko) Chrome/20.0.1132.57 Safari/536.11",
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.6 "
        "(KHTML, like Gecko) Chrome/20.0.1092.0 Safari/536.6",
        "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.6 "
        "(KHTML, like Gecko) Chrome/20.0.1090.0 Safari/536.6",
        "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.1 "
        "(KHTML, like Gecko) Chrome/19.77.34.5 Safari/537.1",
        "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/536.5 "
        "(KHTML, like Gecko) Chrome/19.0.1084.9 Safari/536.5",
        "Mozilla/5.0 (Windows NT 6.0) AppleWebKit/536.5 "
        "(KHTML, like Gecko) Chrome/19.0.1084.36 Safari/536.5",
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 "
        "(KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",
        "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/536.3 "
        "(KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",
        "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_0) AppleWebKit/536.3 "
        "(KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 "
        "(KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 "
        "(KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 "
        "(KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 "
        "(KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/536.3 "
        "(KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 "
        "(KHTML, like Gecko) Chrome/19.0.1061.0 Safari/536.3",
        "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/535.24 "
        "(KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24",
        "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/535.24 "
        "(KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24"
]

3.代理池

作用:

  尽可能多的将scrapy工程中的请求的IP设置成不同的

操作流程:

  在下载中间件中拦截请求

  将拦截的请求的IP修改成某一代理IP

  在配置文件中开启下载中间件

#批量对拦截到的请求进行ip更换
#单独封装下载中间件类
class Proxy(object):
    def process_request(self, request, spider):
        #对拦截到请求的url进行判断(协议头到底是http还是https)
        #request.url返回值:http://www.xxx.com
        h = request.url.split(':')[0]  #请求的协议头
        if h == 'https':
            ip = random.choice(PROXY_https)
            request.meta['proxy'] = 'https://'+ip
        else:
            ip = random.choice(PROXY_http)
            request.meta['proxy'] = 'http://' + ip

#可被选用的代理IP
PROXY_http = [
    '153.180.102.104:80',
    '195.208.131.189:56055',
]
PROXY_https = [
    '120.83.49.90:9000',
    '95.189.112.214:35508',
]

五.scrapy中的selenium的应用

使用流程:

  在spider的构造方法中创建一个浏览器对象(作为当前spider的一个属性)

  重写spider的一个方法closed(self.spider),在该方法中执行浏览器关闭操作

  在下载中间件的process_response方法中,通过spider参数获取浏览器对象

  在中间件的process_response中定制基于浏览器自动化的操作代码(获取动态加载出来的页面源码数据)

  实例化一个响应对象,且将page_source返回的页面源码封装到该对象中

  返回该新的响应对象

示例:

  爬虫文件

class WangyiSpider(RedisSpider):
    name = 'wangyi'
    #allowed_domains = ['www.xxxx.com']
    start_urls = ['https://news.163.com']
    def __init__(self):
        #实例化一个浏览器对象(实例化一次)
        self.bro = webdriver.Chrome(executable_path='/Users/bobo/Desktop/chromedriver')

    #必须在整个爬虫结束后,关闭浏览器
    def closed(self,spider):
        print('爬虫结束')
        self.bro.quit()

  中间件文件

from scrapy.http import HtmlResponse    
    #参数介绍:
    #拦截到响应对象(下载器传递给Spider的响应对象)
    #request:响应对象对应的请求对象
    #response:拦截到的响应对象
    #spider:爬虫文件中对应的爬虫类的实例
    def process_response(self, request, response, spider):
        #响应对象中存储页面数据的篡改
        if request.url in['http://news.163.com/domestic/','http://news.163.com/world/','http://news.163.com/air/','http://war.163.com/']:
            spider.bro.get(url=request.url)
            js = 'window.scrollTo(0,document.body.scrollHeight)'
            spider.bro.execute_script(js)
            time.sleep(2)  #一定要给与浏览器一定的缓冲加载数据的时间
            #页面数据就是包含了动态加载出来的新闻数据对应的页面数据
            page_text = spider.bro.page_source
            #篡改响应对象
            return HtmlResponse(url=spider.bro.current_url,body=page_text,encoding='utf-8',request=request)
        else:
            return response

  配置文件

DOWNLOADER_MIDDLEWARES = {
    'wangyiPro.middlewares.WangyiproDownloaderMiddleware': 543,

}

参考:https://www.cnblogs.com/bobo-zhang/p/10013045.html

 

转载于:https://www.cnblogs.com/chenxi67/p/10471503.html

你可能感兴趣的:(scrapy的核心组件,post请求,日志、请求参数,中间件的UA池和selenium的应用)