机器学习中分类和回归模型的评价指标

 

分类算法的效果评估


1,准确率accuracy_score
from sklearn.metrics import accuracy_score


2,精确率/查准率precision_score
from sklearn.metrics import precision_score
分为宏平均(macro)和微平均(micro),宏平均比微平均更合理。
metrics.precision_score(y_true, y_pred, average='micro')
metrics.precision_score(y_true, y_pred, average='macro')
其中average参数有五种:(None, ‘micro’, ‘macro’, ‘weighted’, ‘samples’)


3,召回率/查全率recall_score
from sklearn.metrics import recall_score
召回率也有宏平均和微平均的区别,和上面的用法一样。


4,F1-score
from sklearn.metrics import f1_score
metrics.f1_score(y_true, y_pred, average='weighted')


5,混淆矩阵(confusion-matrix)
from sklearn.metrics import confusion_matrix


6,分类报告(classification_report)
from sklearn.metrics import classification_report
包含precision/recall/f1-score/均值/分类个数


7,kappa score
from sklearn.metrics import cohen_kappa_score
cohen_kappa_score(y_true, y_pred)


8,ROC
1)计算ROC值
from sklearn.metrics import roc_auc_score
roc_auc_score(y_true, y_scores)
2)画ROC图
具体画ROC图的方法请参照官方给出的代码
http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html


9,距离
1)海明距离(hamming_loss)
from sklearn.metrics import hamming_loss
hamming_loss(y_true, y_pred)
2)Jaccard距离(jaccard_similarity_score)
from sklearn.metrics import jaccard_similarity_score
jaccard_similarity_score(y_true, y_pred)

回归算法的评价指标


1,可释方差也叫解释方差(explained_variance_score)
from sklearn.metrics import explained_variance_score
explained_variance_score(y_true, y_pred)


2,平均绝对误差(mean_absolute_error)
from sklearn.metrics import mean_absolute_error
mean_absolute_error(y_true, y_pred)


3,均方误差(mean_squared_error)
from sklearn.metrics import mean_squared_error
mean_squared_error(y_true, y_pred)


4,中值绝对误差(median_absolute_error)
from sklearn.metrics import median_absolute_error
median_absolute_error(y_true, y_pred)


5,R方值,确定系数(r2_score)
from sklearn.metrics import r2_score
r2_score(y_true, y_pred)


作者:曦宝
链接:https://www.jianshu.com/p/c3cf5c6081ad
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

你可能感兴趣的:(#,基础知识,#,理论方法,机器学习,python,评价指标,回归模型和分类模型)