斯坦福大学机器学习笔记——当训练模型性能不好时的措施(假设评估、模型选择和交叉验证集、正则化、学习曲线)

以我们前面讲述的线性回归为例,比如我们在训练集上训练出最优的模型,但是当我们将其使用到测试集时,测试的误差很大,我们该怎么办?
我们一般采取的措施主要包括以下6种:

  1. 增加训练样本的数目(该方法适用于过拟合现象时,解决高方差。一般都是有效的,但是代价较大,如果下面的方法有效,可以优先采用下面的方式);
  2. 尝试减少特征的数量(该方法适用于过拟合现象时,解决高方差);
  3. 尝试获得更多的特征(该方法适用于欠拟合现象时,解决高偏差);
  4. 尝试增加多项式特征(该方法适用于欠拟合现象时,解决高偏差);
  5. 尝试减小正则化程度 λ (该方法适用于欠拟合现象时,解决高偏差);
  6. 尝试增加正则化程度 λ (该方法适用于过拟合现象时,解决高方差);

上面的方法不是随机选择,是在合适的情况下(过拟合和欠拟合)选择合适的方法,对于怎么判断一个模型是过拟合还是欠拟合,我们会在下面给出一些机器学习诊断法。

如何对一个假设进行评估?
我们前面在讲述线性回归和逻辑回归时,只是注重针对训练数据集训练出一个最优的参数,但是我们训练处的模型对于测试集的性能好坏我们没有进行判断,我们只是训练的模型使得损失函数最小,我们前面也讨论过,在训练数据集上损失函数最小并不能代表对于给定的测试数据,测试数据的评估非常准确,比如过拟合现象发生时,那我们如何评价一个假设的好坏呢?
主要的方法包括两种:
1.对于简答的模型,我们可以采用将 hθ(x) 的图像画出,来判断模型的好坏,但是这种方法对于特征变量不是一个时,这种方法很难实现或者不可能实现。例如我们曾经看到过这样的图像,可以通过 hθ(x) 的图像明显可以看出,该假设存在着过拟合现象。
斯坦福大学机器学习笔记——当训练模型性能不好时的措施(假设评估、模型选择和交叉验证集、正则化、学习曲线)_第1张图片
2.另一种评估假设的方法为:将原来的数据集分为训练集和测试集,一般我们是从原来的数据集中随机选取(保证训练集和测试集中都含有各种类型的数据)70%的数据作为训练集,剩下的30%的样本作为测试集。同时这种将原来数据集划分为训练集和测试集的方法可以用于帮助特征选择、多项式次数的选择以及正则化参数的选择等。数据集划分的过程如下:
斯坦福大学机器学习笔记——当训练模型性能不好时的措施(假设评估、模型选择和交叉验证集、正则化、学习曲线)_第2张图片
以上面数据集为例,选取前7个为训练集,后3个为测试集。用前7个数据集做训练训练出一个最优的模型,评价这个训练出的模型的好坏可以使用测试集来进行判断,判断的标准可以使用测试集的损失函数来进行定量的衡量。
对于回归问题,测试集的损失函数计算公式如下:

Jtest(θ)=12mtesti=1mtest(hθ(x(i)test)y(i)test)2

而对于分类问题,测试集的损失函数计算公式如下:
这里写图片描述
这种测量方式,如果测试样本损失函数很大,则代表训练出的模型泛化能力不好。
对于分类问题,还有另外一种测量的方式,称为误分类率,它对于每一个测试样本进行计算,计算的公式如下:

error=1mtesti=1mtesterr(hθ(x(i)test),y(i)))

其中,
这里写图片描述

模型的选择和交叉验证集:
上述我们是在模型选择好了之后进行训练的,也就是上述我们都是确定了假设进行训练的,但是我们怎么对模型进行选择呢,这一节我们来讨论一下模型的选择,以及和交叉验证集的关系。
模型选择主要包括以下内容:1.怎样选择正确的特征来构造学习算法?2.怎样选择学习算法中正则化参数 λ ?等问题。
首先我们结合一个例子来引出模型的选择和验证集:
斯坦福大学机器学习笔记——当训练模型性能不好时的措施(假设评估、模型选择和交叉验证集、正则化、学习曲线)_第3张图片
例如我们有上面十个模型,我们对于给定的数据集选择哪种模型呢?按照我们上面讨论的将数据集划分为训练集和测试集,使用训练集对上述模型进行训练,然后使用测试集来进行选择最佳的模型,比如最优的为第五个模型,但是这并不能衡量这个模型的泛化能力,因为测试集已经用于选择最优的模型,这个模型对于其他未知数据的泛化能力还是未知的。
所以针对上述问题我们可以将数据集划分为训练集、交叉验证集和测试集。一般情况下,训练集占总样本的60%,交叉验证集占20%,测试集占20%。其中训练集用于训练,交叉验证集用于选择最优的模型,测试集用于测试模型的泛化能力。
模型选择方法为:
1. 使用训练集训练10个模型;
2. 用10个模型分别对交叉验证集计算出交叉验证误差(代价函数的值),其中计算公式为:
这里写图片描述
3. 选取交叉验证误差最小的模型作为选择的模型;
4. 用测试集对选择出的模型计算泛化能力(测试样本的损失函数),计算公式如上文中讨论的一样。

假设对诊断偏差和方差(即过拟合还是欠拟合)的影响
利用上述方法学习到的算法性能不好一般会有两种情况:
1.会出现过拟合,也就是所谓的方差很大;
2.会出现欠拟合,也就是所谓的偏差很大;
首先应该确定算法性能的不好,是由哪种原因造成的,然后针对不同的情况采取不同的改进策略,可以有效的改进当前的算法。下面我们来讲述一下怎么判断是过拟合还是欠拟合。
以下面例子为例,来进行讨论:
斯坦福大学机器学习笔记——当训练模型性能不好时的措施(假设评估、模型选择和交叉验证集、正则化、学习曲线)_第4张图片
我们可以通过绘制出训练集的代价函数和交叉验证验证集的代价函数与方次d的关系来进行判断是上述哪种情况的一种:
斯坦福大学机器学习笔记——当训练模型性能不好时的措施(假设评估、模型选择和交叉验证集、正则化、学习曲线)_第5张图片
对于训练集,当d较小时,模型的拟合程度不是很好,所以训练样本集的代价函数比较大;随着d的增加,模型的拟合程度不断提高,代价函数不断的减小;
对于交叉验证集,由于d比较小时,模型的拟合程度不是很好,对于新来的样本预测结果会偏差很大,所以交叉验证集的代价函数在初始阶段会很大,而随着d的增加会出现一个比较好的方次d,使得模型的拟合程度最佳,同时对于新来的样本泛化能力很强,所以会有一个代价函数最小的点出现(该转折点即是模型开始由欠拟合转向过拟合的点),随后随着d的增加,由于过拟合,会存在对新的样本预测结果不良的现象,所以代价函数会逐渐增大。
当我们绘制出上述曲线时,我们就可以判断出什么时候是过拟合什么时候欠拟合,判断的标准如下:
1. 当训练误差与交叉验证集误差接近时,并且都很大时,该模型高偏差(欠拟合);
2. 当训练误差远小于验证集误差时,并且训练误差很小时,该模型高方差(过拟合)。
判断出该模型是过拟合或者欠拟合之后,然后使用上述提到的过拟合和欠拟合的解决方法,对算法进行改进。

正则化对偏差和方差的影响
我们前面讲述过正则化可以有效的处理过拟合现象,但是我们上述所说的处理过拟合是在合适的 λ 情况下,那么 λ 值的大小对模型的性能是怎样影响的呢?我们采用上述与方次d对性能的影响相同的方式来分析 λ 的值对性能的影响。
我们首先选择一系列的 λ 值,通常 λ 的选择是0~10之间呈现二倍关系的值(如:0,0.01,0.02,0.04,0.08,0.15,0.32,0.64,1.28,5.26,5.12,10)
构建方式如下:
斯坦福大学机器学习笔记——当训练模型性能不好时的措施(假设评估、模型选择和交叉验证集、正则化、学习曲线)_第6张图片
选择 λ 的方法如下:
1.使用训练集训练处12个不同程度正则化模型;
2.用12个模型分别对交叉验证集计算出交叉验证误差;
3.选择得出交叉验证误差最小的模型;
4.运用步骤3选出的模型对测试集计算得出推广误差

我们同样可以将训练集和交叉验证集模型的代价函数与 λ 的值绘制在一张图上。对于训练集、验证集和测试集的代价函数计算公式为:
斯坦福大学机器学习笔记——当训练模型性能不好时的措施(假设评估、模型选择和交叉验证集、正则化、学习曲线)_第7张图片
需要注意的是,当计算训练集、交叉验证集和测试集误差时,不计算正则项,然后绘制出训练集和交叉验证集代价函数与 λ 值的关系,如下图所示:
斯坦福大学机器学习笔记——当训练模型性能不好时的措施(假设评估、模型选择和交叉验证集、正则化、学习曲线)_第8张图片
1. 当 λ 较小时,训练误差较小(过拟合)而交叉验证集误差较大;
2. 随着 λ 的增加(从过拟合到欠拟合的过程),训练集误差逐渐增大(欠拟合),而交叉验证集误差则是先减小后增大。

学习曲线
学习曲线也是一种可以判断算法是否处于过拟合还是欠拟合的情况,学习曲线是将训练集误差和交叉验证集误差作为训练集实例数量(m)的函数绘制的图像。学习曲先不仅可以帮助我们是不是处于过拟合或者欠拟合,它还可以帮助我们判断是否为了提高算法的性能需要我们收集多的数据。
假设我们有100行数据,我们从第一行数据开始,逐渐增加数据进行训练,得到每次训练数据的代价函数值。当数据很少时,训练模型能够非常完美的拟合很少的数据,但是训练出的模型却不能泛化其他的数据,所以当数据很少时,训练集的代价函数很小,但是交叉验证集的代价函数很大,随着样本的增加,训练集的代价函数逐渐增大,交叉验证集的代价函数逐渐减小。绘制的曲线如下图所示:
斯坦福大学机器学习笔记——当训练模型性能不好时的措施(假设评估、模型选择和交叉验证集、正则化、学习曲线)_第9张图片
1. 如何用学习曲线识别欠拟合:
假设我们的模型处于欠拟合的情况下,拟合曲线如下图所示:
斯坦福大学机器学习笔记——当训练模型性能不好时的措施(假设评估、模型选择和交叉验证集、正则化、学习曲线)_第10张图片
我们可以看出,无论我们怎样增加样本数据,误差都不会有很大改观。同时在欠拟合的情况下,会出现随着样本的增加,训练集代价函数和交叉验证集代价函数都很大的情况,在这种情况下,就没有必要花费时间在收集数据上了,同时这也是一种判断模型是过拟合还是欠拟合的方法。
2. 如何使用学习曲线识别过拟合:
假设我们有一个非常高次的多项式模型(比如最高次项达到100次),并且正则化非常小时,从下图可以看出,当交叉验证集误差远大于训练集误差时,往训练集增加更多数据可以提高模型的效果。
斯坦福大学机器学习笔记——当训练模型性能不好时的措施(假设评估、模型选择和交叉验证集、正则化、学习曲线)_第11张图片
对于过拟合现象时,会出现训练集代价函数一直都很小(虽然是增加的趋势),但是验证集的损失函数会很大(虽然是减小的趋势),同时训练集代价函数和验证集代价函数相差会很大,可以使用这种方法来判断该模型处于过拟合阶段。

对于神经网络我们在讨论一下过拟合和欠拟合现象:
斯坦福大学机器学习笔记——当训练模型性能不好时的措施(假设评估、模型选择和交叉验证集、正则化、学习曲线)_第12张图片
使用较小的神经网络,类似于参数较少的情况,容易导致高偏差和欠拟合,但是计算代价小;使用较大的神经网络,类似于参数较多的情况,容易导致高方差和过拟合,虽然计算代价比较大,但是可以通过正则化手段来调整而更加适应数据。
对于神经网络的模型选择:我们一般选择较大的神经网络并采用正则化处理,而不会选择较小的神经网络。
对于神经网络隐藏层的层数选择,一般我们从一层开始逐渐增加层数,为了更好的选择出最佳的层数,可以针对不同隐藏层层数的神经网络进行训练,然后选择交叉验证集代价函数最小的神经网络。

你可能感兴趣的:(机器学习)