YOLOv3的keras版本代码注释

源工程来自:https://github.com/qqwweee/keras-yolo3
使用方法参考博客:windows10+keras下的yolov3的快速使用及自己数据集的训练

应该会有小伙伴和我一样,下载工程文件后不知道从何看起,下面是各个文件的作用(加粗字体是文件夹):

keras-yolo3-master
---- font字体文件夹
---- model_data
-------- coco_classes.txt — coco数据集的类别
-------- tiny_yolo_anchors.txt — yolo简化版的6个anchor值(宽,高)
-------- voc_classes.txt — voc数据集的类别
-------- yolo_anchors.txt — 预设的9个anchor值
---- yolo3
-------- _ init _.py — 无作用
-------- model.py — 定义yolov3网络结构、iou的计算以及yolo损失函数
-------- utils.py — 定义一些工具函数
---- coco_annotation.py — 将coco形式的标签转为yolo形式
---- convert.py — 将下载的权重文件转为keras形式,即.h5格式
---- darknet53.cfg — 定义darknet的网络结构,训练时没有用到
---- kmeans.py — 对标签做kmeans聚类,得到anchor
---- train.py — 定义训练参数的方法
---- train_bottleneck
---- voc_annotation.py — 将voc形式的标签转为yolo形式
---- yolo.py — 定义测试用到的方法
---- yolo_video —定义用户接口,使用这个文件来测试
---- yolov3.cfg — 定义yolov3网络结构,在转换权重文件时用到,训练时没有用到
---- yolov3-tiny.cfg — 定义yolov3简化版的网络结构,训练时没有用到

想直接上手测试的话从yolo_video.py和yolo.py看起
需要训练自己的数据集的话建议从train.py看起。

下面是主要代码文件的注释:(个人理解,可能有错误)
yolo.py
model.py
utils.py
train.py

yolo.py

# -*- coding: utf-8 -*-
"""
Class definition of YOLO_v3 style detection model on image and video
"""

import colorsys
import os
from timeit import default_timer as timer

import numpy as np
from keras import backend as K
from keras.models import load_model
from keras.layers import Input
from PIL import Image, ImageFont, ImageDraw

from yolo3.model import yolo_eval, yolo_body, tiny_yolo_body
from yolo3.utils import letterbox_image
import os
from keras.utils import multi_gpu_model

class YOLO(object):
    _defaults = {
        "model_path": 'model_data/yolo.h5',#权重文件路径
        "anchors_path": 'model_data/yolo_anchors.txt',#anchor路径
        "classes_path": 'model_data/coco_classes.txt',#类别路径
        "score" : 0.3,#置信度阈值
        "iou" : 0.45,#交并比阈值
        "model_image_size" : (416, 416),#图片尺寸,会影响速度和准确度
        "gpu_num" : 1,
    }

    @classmethod
    # 将字典里的参数转为类的成员变量
    def get_defaults(cls, n):
        if n in cls._defaults:
            return cls._defaults[n]
        else:
            return "Unrecognized attribute name '" + n + "'"

    def __init__(self, **kwargs):
        self.__dict__.update(self._defaults) # set up default values
        self.__dict__.update(kwargs) # and update with user overrides
        self.class_names = self._get_class()#读取所有的类别
        self.anchors = self._get_anchors()#读取所有的anchor
        self.sess = K.get_session()
        self.boxes, self.scores, self.classes = self.generate()

    # 读取所有的类别
    def _get_class(self):
        classes_path = os.path.expanduser(self.classes_path)
        with open(classes_path) as f:
            class_names = f.readlines()
        class_names = [c.strip() for c in class_names]#strip() 方法用于移除字符串头尾指定的字符(默认为空格或换行符)或字符序列
        return class_names

    # 读取所有的anchor
    def _get_anchors(self):
        anchors_path = os.path.expanduser(self.anchors_path)
        with open(anchors_path) as f:
            anchors = f.readline()
        anchors = [float(x) for x in anchors.split(',')]
        return np.array(anchors).reshape(-1, 2)

    # 读入训练好的模型,如果失败则创建模型,调用model.py里的yolo_eval()得到边框、置信度、类别
    def generate(self):
        model_path = os.path.expanduser(self.model_path)
        assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'

        # Load model, or construct model and load weights.
        num_anchors = len(self.anchors)
        num_classes = len(self.class_names)
        is_tiny_version = num_anchors==6 # default setting
        try:
            self.yolo_model = load_model(model_path, compile=False)
        except:
            self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \
                if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
            self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match
        else:
            #检查一下模型中的参数是否和设置的anchor、类别数量一致
            assert self.yolo_model.layers[-1].output_shape[-1] == \
                num_anchors/len(self.yolo_model.output) * (num_classes + 5), \
                'Mismatch between model and given anchor and class sizes'

        print('{} model, anchors, and classes loaded.'.format(model_path))

        # 生成用来画边框的颜色
        # Generate colors for drawing bounding boxes.
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))
        np.random.seed(10101)  # Fixed seed for consistent colors across runs.
        np.random.shuffle(self.colors)  # Shuffle colors to decorrelate adjacent classes.
        np.random.seed(None)  # Reset seed to default.

        # 通过yolo_eval()得到输出,yolo_eval()定义在model.py中
        # Generate output tensor targets for filtered bounding boxes.
        self.input_image_shape = K.placeholder(shape=(2, ))
        if self.gpu_num>=2:
            self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num)
        boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
                len(self.class_names), self.input_image_shape,
                score_threshold=self.score, iou_threshold=self.iou)
        return boxes, scores, classes

    # 检测图片
    def detect_image(self, image):
        start = timer()
        # 确保图片尺寸合理(32的倍数)
        if self.model_image_size != (None, None):
            assert self.model_image_size[0]%32 == 0, 'Multiples of 32 required'
            assert self.model_image_size[1]%32 == 0, 'Multiples of 32 required'
            boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size)))
        else:
            new_image_size = (image.width - (image.width % 32),
                              image.height - (image.height % 32))
            boxed_image = letterbox_image(image, new_image_size)
        image_data = np.array(boxed_image, dtype='float32')

        print(image_data.shape)
        image_data /= 255.#归一化
        image_data = np.expand_dims(image_data, 0)  # Add batch dimension.

        #跑一遍前向传播,得到输出
        out_boxes, out_scores, out_classes = self.sess.run(
            [self.boxes, self.scores, self.classes],#这几个的计算方法在self.generate()里
            feed_dict={
                self.yolo_model.input: image_data,
                self.input_image_shape: [image.size[1], image.size[0]],
                K.learning_phase(): 0
            })

        print('Found {} boxes for {}'.format(len(out_boxes), 'img'))

        font = ImageFont.truetype(font='font/FiraMono-Medium.otf',
                    size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
        thickness = (image.size[0] + image.size[1]) // 300#根据检测图片的大小设置边框宽度

        #遍历所有的结果
        for i, c in reversed(list(enumerate(out_classes))):
            predicted_class = self.class_names[c]
            box = out_boxes[i]
            score = out_scores[i]

            label = '{} {:.2f}'.format(predicted_class, score)
            draw = ImageDraw.Draw(image)#准备绘图
            label_size = draw.textsize(label, font)#计算需要绘制的标签的大小

            top, left, bottom, right = box
            # 将边框限定在图片里面,且属性限定为正整数
            top = max(0, np.floor(top + 0.5).astype('int32'))
            left = max(0, np.floor(left + 0.5).astype('int32'))
            bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32'))
            right = min(image.size[0], np.floor(right + 0.5).astype('int32'))
            print(label, (left, top), (right, bottom))

            if top - label_size[1] >= 0:#设置类别标签的显示区域
                text_origin = np.array([left, top - label_size[1]])
            else:
                text_origin = np.array([left, top + 1])

            # 画检测框,因为draw.rectangle()不能指定线条宽度,所以要画多次
            # My kingdom for a good redistributable image drawing library.
            for i in range(thickness):
                draw.rectangle(
                    [left + i, top + i, right - i, bottom - i],
                    outline=self.colors[c])
            # 画标签框
            draw.rectangle(
                [tuple(text_origin), tuple(text_origin + label_size)],
                fill=self.colors[c])
            # 画标签
            draw.text(text_origin, label, fill=(0, 0, 0), font=font)
            del draw

        end = timer()
        print(end - start)
        return image

    def close_session(self):
        self.sess.close()

#检测视频,读入视频,然后分帧调用detect_image()
def detect_video(yolo, video_path, output_path=""):
    import cv2
    vid = cv2.VideoCapture(video_path)
    if not vid.isOpened():
        raise IOError("Couldn't open webcam or video")
    video_FourCC    = int(vid.get(cv2.CAP_PROP_FOURCC))
    video_fps       = vid.get(cv2.CAP_PROP_FPS)
    video_size      = (int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)),
                        int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)))
    isOutput = True if output_path != "" else False
    if isOutput:
        print("!!! TYPE:", type(output_path), type(video_FourCC), type(video_fps), type(video_size))
        out = cv2.VideoWriter(output_path, video_FourCC, video_fps, video_size)
    accum_time = 0
    curr_fps = 0
    fps = "FPS: ??"
    prev_time = timer()
    while True:
        return_value, frame = vid.read()#读入一帧图像
        image = Image.fromarray(frame)
        image = yolo.detect_image(image)#检测
        result = np.asarray(image)
        #计算fps
        curr_time = timer()
        exec_time = curr_time - prev_time
        prev_time = curr_time
        accum_time = accum_time + exec_time
        curr_fps = curr_fps + 1
        if accum_time > 1:
            accum_time = accum_time - 1
            fps = "FPS: " + str(curr_fps)
            curr_fps = 0
        #画出fps
        cv2.putText(result, text=fps, org=(3, 15), fontFace=cv2.FONT_HERSHEY_SIMPLEX,
                    fontScale=0.50, color=(255, 0, 0), thickness=2)
        cv2.namedWindow("result", cv2.WINDOW_NORMAL)
        cv2.imshow("result", result)
        if isOutput:
            out.write(result)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    yolo.close_session()


返回

model.py

"""YOLO_v3 Model Defined in Keras."""

from functools import wraps

import numpy as np
import tensorflow as tf
from keras import backend as K
from keras.layers import Conv2D, Add, ZeroPadding2D, UpSampling2D, Concatenate, MaxPooling2D
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.normalization import BatchNormalization
from keras.models import Model
from keras.regularizers import l2

from yolo3.utils import compose

#定义卷积层
@wraps(Conv2D)
def DarknetConv2D(*args, **kwargs):
    """Wrapper to set Darknet parameters for Convolution2D."""
    darknet_conv_kwargs = {'kernel_regularizer': l2(5e-4)}
    darknet_conv_kwargs['padding'] = 'valid' if kwargs.get('strides')==(2,2) else 'same'
    darknet_conv_kwargs.update(kwargs)
    return Conv2D(*args, **darknet_conv_kwargs)

#卷积层+批量标准化+激活函数,作为yolov3的一个基本块
def DarknetConv2D_BN_Leaky(*args, **kwargs):
    """Darknet Convolution2D followed by BatchNormalization and LeakyReLU."""
    no_bias_kwargs = {'use_bias': False}
    no_bias_kwargs.update(kwargs)
    return compose(
        DarknetConv2D(*args, **no_bias_kwargs),
        BatchNormalization(),
        LeakyReLU(alpha=0.1))

#定义残差块,由基本块和全零填充组成
def resblock_body(x, num_filters, num_blocks):
    '''A series of resblocks starting with a downsampling Convolution2D'''
    # Darknet uses left and top padding instead of 'same' mode
    x = ZeroPadding2D(((1,0),(1,0)))(x)
    x = DarknetConv2D_BN_Leaky(num_filters, (3,3), strides=(2,2))(x)
    for i in range(num_blocks):
        y = compose(
                DarknetConv2D_BN_Leaky(num_filters//2, (1,1)),
                DarknetConv2D_BN_Leaky(num_filters, (3,3)))(x)
        x = Add()([x,y])
    return x

#定义主干网络darknet的结构,由基本块和残差块组成
#DarknetConv2D_BN_Leaky和resblock_body定义在上面
def darknet_body(x):
    '''Darknent body having 52 Convolution2D layers'''
    x = DarknetConv2D_BN_Leaky(32, (3,3))(x)
    x = resblock_body(x, 64, 1)
    x = resblock_body(x, 128, 2)
    x = resblock_body(x, 256, 8)
    x = resblock_body(x, 512, 8)
    x = resblock_body(x, 1024, 4)
    return x

#定义除主干网络外的后面几层网络
def make_last_layers(x, num_filters, out_filters):
    '''6 Conv2D_BN_Leaky layers followed by a Conv2D_linear layer'''
    x = compose(
            DarknetConv2D_BN_Leaky(num_filters, (1,1)),
            DarknetConv2D_BN_Leaky(num_filters*2, (3,3)),
            DarknetConv2D_BN_Leaky(num_filters, (1,1)),
            DarknetConv2D_BN_Leaky(num_filters*2, (3,3)),
            DarknetConv2D_BN_Leaky(num_filters, (1,1)))(x)
    y = compose(
            DarknetConv2D_BN_Leaky(num_filters*2, (3,3)),
            DarknetConv2D(out_filters, (1,1)))(x)
    return x, y

#定义yolov3网络结构,包括主干和三个输出层
def yolo_body(inputs, num_anchors, num_classes):
    """Create YOLO_V3 model CNN body in Keras."""
    darknet = Model(inputs, darknet_body(inputs))
    x, y1 = make_last_layers(darknet.output, 512, num_anchors*(num_classes+5))

    x = compose(
            DarknetConv2D_BN_Leaky(256, (1,1)),
            UpSampling2D(2))(x)
    x = Concatenate()([x,darknet.layers[152].output])
    x, y2 = make_last_layers(x, 256, num_anchors*(num_classes+5))

    x = compose(
            DarknetConv2D_BN_Leaky(128, (1,1)),
            UpSampling2D(2))(x)
    x = Concatenate()([x,darknet.layers[92].output])
    x, y3 = make_last_layers(x, 128, num_anchors*(num_classes+5))

    return Model(inputs, [y1,y2,y3])

#定义简化版的网络结构
def tiny_yolo_body(inputs, num_anchors, num_classes):
    '''Create Tiny YOLO_v3 model CNN body in keras.'''
    x1 = compose(
            DarknetConv2D_BN_Leaky(16, (3,3)),
            MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),
            DarknetConv2D_BN_Leaky(32, (3,3)),
            MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),
            DarknetConv2D_BN_Leaky(64, (3,3)),
            MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),
            DarknetConv2D_BN_Leaky(128, (3,3)),
            MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),
            DarknetConv2D_BN_Leaky(256, (3,3)))(inputs)
    x2 = compose(
            MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),
            DarknetConv2D_BN_Leaky(512, (3,3)),
            MaxPooling2D(pool_size=(2,2), strides=(1,1), padding='same'),
            DarknetConv2D_BN_Leaky(1024, (3,3)),
            DarknetConv2D_BN_Leaky(256, (1,1)))(x1)
    y1 = compose(
            DarknetConv2D_BN_Leaky(512, (3,3)),
            DarknetConv2D(num_anchors*(num_classes+5), (1,1)))(x2)

    x2 = compose(
            DarknetConv2D_BN_Leaky(128, (1,1)),
            UpSampling2D(2))(x2)
    y2 = compose(
            Concatenate(),
            DarknetConv2D_BN_Leaky(256, (3,3)),
            DarknetConv2D(num_anchors*(num_classes+5), (1,1)))([x2,x1])

    return Model(inputs, [y1,y2])

#从输出层得到边框信息
def yolo_head(feats, anchors, num_classes, input_shape, calc_loss=False):
    """Convert final layer features to bounding box parameters."""
    num_anchors = len(anchors)
    # Reshape to batch, height, width, num_anchors, box_params.
    anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2])

    grid_shape = K.shape(feats)[1:3] # height, width
    grid_y = K.tile(K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]),
        [1, grid_shape[1], 1, 1])
    grid_x = K.tile(K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]),
        [grid_shape[0], 1, 1, 1])
    grid = K.concatenate([grid_x, grid_y])
    grid = K.cast(grid, K.dtype(feats))

    feats = K.reshape(
        feats, [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5])

    # 更据论文中的公式,将预测值转化为真实值的形式
    # Adjust preditions to each spatial grid point and anchor size.
    box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(grid_shape[::-1], K.dtype(feats))
    box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(input_shape[::-1], K.dtype(feats))
    box_confidence = K.sigmoid(feats[..., 4:5])
    box_class_probs = K.sigmoid(feats[..., 5:])

    if calc_loss == True:
        return grid, feats, box_xy, box_wh
    return box_xy, box_wh, box_confidence, box_class_probs

#对边框进行缩放,对应不同尺寸的图片
def yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape):
    '''Get corrected boxes'''
    box_yx = box_xy[..., ::-1]
    box_hw = box_wh[..., ::-1]
    input_shape = K.cast(input_shape, K.dtype(box_yx))
    image_shape = K.cast(image_shape, K.dtype(box_yx))
    new_shape = K.round(image_shape * K.min(input_shape/image_shape))
    offset = (input_shape-new_shape)/2./input_shape
    scale = input_shape/new_shape
    box_yx = (box_yx - offset) * scale
    box_hw *= scale

    box_mins = box_yx - (box_hw / 2.)
    box_maxes = box_yx + (box_hw / 2.)
    boxes =  K.concatenate([
        box_mins[..., 0:1],  # y_min
        box_mins[..., 1:2],  # x_min
        box_maxes[..., 0:1],  # y_max
        box_maxes[..., 1:2]  # x_max
    ])

    # Scale boxes back to original image shape.
    boxes *= K.concatenate([image_shape, image_shape])
    return boxes

#这个函数调用上面的yolo_head()和yolo_correct_boxes(),并转换边框和置信度的格式
def yolo_boxes_and_scores(feats, anchors, num_classes, input_shape, image_shape):
    '''Process Conv layer output'''
    box_xy, box_wh, box_confidence, box_class_probs = yolo_head(feats,
        anchors, num_classes, input_shape)
    boxes = yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape)
    boxes = K.reshape(boxes, [-1, 4])
    box_scores = box_confidence * box_class_probs
    box_scores = K.reshape(box_scores, [-1, num_classes])
    return boxes, box_scores

#测试用的函数,返回边框、置信度和类别,yolo_boxes_and_scores()的定义在上面
def yolo_eval(yolo_outputs,
              anchors,
              num_classes,
              image_shape,
              max_boxes=20,
              score_threshold=.6,
              iou_threshold=.5):
    """Evaluate YOLO model on given input and return filtered boxes."""
    num_layers = len(yolo_outputs)
    #把anchor平均分给输出层
    anchor_mask = [[6,7,8], [3,4,5], [0,1,2]] if num_layers==3 else [[3,4,5], [1,2,3]] # default setting
    input_shape = K.shape(yolo_outputs[0])[1:3] * 32
    boxes = []
    box_scores = []
    #遍历所有的输出层(3个)
    for l in range(num_layers):
        _boxes, _box_scores = yolo_boxes_and_scores(yolo_outputs[l],
            anchors[anchor_mask[l]], num_classes, input_shape, image_shape)
        boxes.append(_boxes)
        box_scores.append(_box_scores)
    boxes = K.concatenate(boxes, axis=0)
    box_scores = K.concatenate(box_scores, axis=0)
    mask = box_scores >= score_threshold#mask用来筛选置信度高于阈值的结果
    max_boxes_tensor = K.constant(max_boxes, dtype='int32')
    boxes_ = []
    scores_ = []
    classes_ = []
    for c in range(num_classes):
        # TODO: use keras backend instead of tf.
        class_boxes = tf.boolean_mask(boxes, mask[:, c])
        class_box_scores = tf.boolean_mask(box_scores[:, c], mask[:, c])
        #进行非极大值抑制
        nms_index = tf.image.non_max_suppression(
            class_boxes, class_box_scores, max_boxes_tensor, iou_threshold=iou_threshold)
        class_boxes = K.gather(class_boxes, nms_index)#gather()在给定的张量中搜索给定下标的向量
        class_box_scores = K.gather(class_box_scores, nms_index)
        classes = K.ones_like(class_box_scores, 'int32') * c
        boxes_.append(class_boxes)
        scores_.append(class_box_scores)
        classes_.append(classes)
    boxes_ = K.concatenate(boxes_, axis=0)
    scores_ = K.concatenate(scores_, axis=0)
    classes_ = K.concatenate(classes_, axis=0)

    return boxes_, scores_, classes_

#将真实标签值(xmin,ymin...)转换成yolo中的形式(tx,ty...),使之能与预测值相比较
def preprocess_true_boxes(true_boxes, input_shape, anchors, num_classes):
    '''Preprocess true boxes to training input format

    Parameters
    ----------
    true_boxes: array, shape=(m, T, 5)
        Absolute x_min, y_min, x_max, y_max, class_id relative to input_shape.
    input_shape: array-like, hw, multiples of 32
    anchors: array, shape=(N, 2), wh
    num_classes: integer

    Returns
    -------
    y_true: list of array, shape like yolo_outputs, xywh are reletive value

    '''
    assert (true_boxes[..., 4]<num_classes).all(), 'class id must be less than num_classes'
    num_layers = len(anchors)//3 # default setting
    anchor_mask = [[6,7,8], [3,4,5], [0,1,2]] if num_layers==3 else [[3,4,5], [1,2,3]]

    true_boxes = np.array(true_boxes, dtype='float32')
    input_shape = np.array(input_shape, dtype='int32')
    boxes_xy = (true_boxes[..., 0:2] + true_boxes[..., 2:4]) // 2
    boxes_wh = true_boxes[..., 2:4] - true_boxes[..., 0:2]
    true_boxes[..., 0:2] = boxes_xy/input_shape[::-1]
    true_boxes[..., 2:4] = boxes_wh/input_shape[::-1]

    m = true_boxes.shape[0]
    grid_shapes = [input_shape//{0:32, 1:16, 2:8}[l] for l in range(num_layers)]
    y_true = [np.zeros((m,grid_shapes[l][0],grid_shapes[l][1],len(anchor_mask[l]),5+num_classes),
        dtype='float32') for l in range(num_layers)]

    # Expand dim to apply broadcasting.
    anchors = np.expand_dims(anchors, 0)
    anchor_maxes = anchors / 2.
    anchor_mins = -anchor_maxes
    valid_mask = boxes_wh[..., 0]>0

    for b in range(m):
        # Discard zero rows.
        wh = boxes_wh[b, valid_mask[b]]
        if len(wh)==0: continue
        # Expand dim to apply broadcasting.
        wh = np.expand_dims(wh, -2)
        box_maxes = wh / 2.
        box_mins = -box_maxes

        intersect_mins = np.maximum(box_mins, anchor_mins)
        intersect_maxes = np.minimum(box_maxes, anchor_maxes)
        intersect_wh = np.maximum(intersect_maxes - intersect_mins, 0.)
        intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
        box_area = wh[..., 0] * wh[..., 1]
        anchor_area = anchors[..., 0] * anchors[..., 1]
        iou = intersect_area / (box_area + anchor_area - intersect_area)

        # Find best anchor for each true box
        best_anchor = np.argmax(iou, axis=-1)

        for t, n in enumerate(best_anchor):
            for l in range(num_layers):
                if n in anchor_mask[l]:
                    i = np.floor(true_boxes[b,t,0]*grid_shapes[l][1]).astype('int32')
                    j = np.floor(true_boxes[b,t,1]*grid_shapes[l][0]).astype('int32')
                    k = anchor_mask[l].index(n)
                    c = true_boxes[b,t, 4].astype('int32')
                    y_true[l][b, j, i, k, 0:4] = true_boxes[b,t, 0:4]
                    y_true[l][b, j, i, k, 4] = 1
                    y_true[l][b, j, i, k, 5+c] = 1

    return y_true

#计算两个矩形框的交并比
def box_iou(b1, b2):
    '''Return iou tensor

    Parameters
    ----------
    b1: tensor, shape=(i1,...,iN, 4), xywh
    b2: tensor, shape=(j, 4), xywh

    Returns
    -------
    iou: tensor, shape=(i1,...,iN, j)

    '''

    # Expand dim to apply broadcasting.
    b1 = K.expand_dims(b1, -2)
    b1_xy = b1[..., :2]
    b1_wh = b1[..., 2:4]
    b1_wh_half = b1_wh/2.
    b1_mins = b1_xy - b1_wh_half
    b1_maxes = b1_xy + b1_wh_half

    # Expand dim to apply broadcasting.
    b2 = K.expand_dims(b2, 0)
    b2_xy = b2[..., :2]
    b2_wh = b2[..., 2:4]
    b2_wh_half = b2_wh/2.
    b2_mins = b2_xy - b2_wh_half
    b2_maxes = b2_xy + b2_wh_half

    intersect_mins = K.maximum(b1_mins, b2_mins)
    intersect_maxes = K.minimum(b1_maxes, b2_maxes)
    intersect_wh = K.maximum(intersect_maxes - intersect_mins, 0.)
    intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
    b1_area = b1_wh[..., 0] * b1_wh[..., 1]
    b2_area = b2_wh[..., 0] * b2_wh[..., 1]
    iou = intersect_area / (b1_area + b2_area - intersect_area)

    return iou

#定义损失函数
def yolo_loss(args, anchors, num_classes, ignore_thresh=.5, print_loss=False):
    '''Return yolo_loss tensor

    Parameters
    ----------
    yolo_outputs: list of tensor, the output of yolo_body or tiny_yolo_body
    y_true: list of array, the output of preprocess_true_boxes
    anchors: array, shape=(N, 2), wh
    num_classes: integer
    ignore_thresh: float, the iou threshold whether to ignore object confidence loss

    Returns
    -------
    loss: tensor, shape=(1,)

    '''
    num_layers = len(anchors)//3 # default setting
    yolo_outputs = args[:num_layers]
    y_true = args[num_layers:]
    anchor_mask = [[6,7,8], [3,4,5], [0,1,2]] if num_layers==3 else [[3,4,5], [1,2,3]]
    input_shape = K.cast(K.shape(yolo_outputs[0])[1:3] * 32, K.dtype(y_true[0]))
    grid_shapes = [K.cast(K.shape(yolo_outputs[l])[1:3], K.dtype(y_true[0])) for l in range(num_layers)]
    loss = 0
    m = K.shape(yolo_outputs[0])[0] # batch size, tensor
    mf = K.cast(m, K.dtype(yolo_outputs[0]))

    for l in range(num_layers):
        object_mask = y_true[l][..., 4:5]
        true_class_probs = y_true[l][..., 5:]

        grid, raw_pred, pred_xy, pred_wh = yolo_head(yolo_outputs[l],
             anchors[anchor_mask[l]], num_classes, input_shape, calc_loss=True)
        pred_box = K.concatenate([pred_xy, pred_wh])

        # Darknet raw box to calculate loss.
        raw_true_xy = y_true[l][..., :2]*grid_shapes[l][::-1] - grid
        raw_true_wh = K.log(y_true[l][..., 2:4] / anchors[anchor_mask[l]] * input_shape[::-1])
        raw_true_wh = K.switch(object_mask, raw_true_wh, K.zeros_like(raw_true_wh)) # avoid log(0)=-inf
        box_loss_scale = 2 - y_true[l][...,2:3]*y_true[l][...,3:4]

        # Find ignore mask, iterate over each of batch.
        ignore_mask = tf.TensorArray(K.dtype(y_true[0]), size=1, dynamic_size=True)
        object_mask_bool = K.cast(object_mask, 'bool')
        def loop_body(b, ignore_mask):
            true_box = tf.boolean_mask(y_true[l][b,...,0:4], object_mask_bool[b,...,0])
            iou = box_iou(pred_box[b], true_box)
            best_iou = K.max(iou, axis=-1)
            ignore_mask = ignore_mask.write(b, K.cast(best_iou<ignore_thresh, K.dtype(true_box)))
            return b+1, ignore_mask
        _, ignore_mask = K.control_flow_ops.while_loop(lambda b,*args: b<m, loop_body, [0, ignore_mask])
        ignore_mask = ignore_mask.stack()
        ignore_mask = K.expand_dims(ignore_mask, -1)

        # K.binary_crossentropy is helpful to avoid exp overflow.
        xy_loss = object_mask * box_loss_scale * K.binary_crossentropy(raw_true_xy, raw_pred[...,0:2], from_logits=True)
        wh_loss = object_mask * box_loss_scale * 0.5 * K.square(raw_true_wh-raw_pred[...,2:4])
        confidence_loss = object_mask * K.binary_crossentropy(object_mask, raw_pred[...,4:5], from_logits=True)+ \
            (1-object_mask) * K.binary_crossentropy(object_mask, raw_pred[...,4:5], from_logits=True) * ignore_mask
        class_loss = object_mask * K.binary_crossentropy(true_class_probs, raw_pred[...,5:], from_logits=True)

        xy_loss = K.sum(xy_loss) / mf
        wh_loss = K.sum(wh_loss) / mf
        confidence_loss = K.sum(confidence_loss) / mf
        class_loss = K.sum(class_loss) / mf
        loss += xy_loss + wh_loss + confidence_loss + class_loss
        if print_loss:
            loss = tf.Print(loss, [loss, xy_loss, wh_loss, confidence_loss, class_loss, K.sum(ignore_mask)], message='loss: ')
    return loss

返回

utils.py

"""Miscellaneous utility functions."""

from functools import reduce

from PIL import Image
import numpy as np
from matplotlib.colors import rgb_to_hsv, hsv_to_rgb

#组合多个函数,上一个函数的输出作为下一个的输入
def compose(*funcs):
    """Compose arbitrarily many functions, evaluated left to right.

    Reference: https://mathieularose.com/function-composition-in-python/
    """
    # return lambda x: reduce(lambda v, f: f(v), funcs, x)
    if funcs:
        return reduce(lambda f, g: lambda *a, **kw: g(f(*a, **kw)), funcs)
    else:
        raise ValueError('Composition of empty sequence not supported.')

#等比例缩放图片,
def letterbox_image(image, size):
    '''resize image with unchanged aspect ratio using padding'''
    iw, ih = image.size
    w, h = size
    scale = min(w/iw, h/ih)
    nw = int(iw*scale)
    nh = int(ih*scale)

    image = image.resize((nw,nh), Image.BICUBIC)
    new_image = Image.new('RGB', size, (128,128,128))
    new_image.paste(image, ((w-nw)//2, (h-nh)//2))
    return new_image

#返回a~b之间的随机数
def rand(a=0, b=1):
    return np.random.rand()*(b-a) + a

'''数据预处理,对图像属性做一些变换,模拟实时图像数据,并且把RGB值归一化;
有两种模式,随机和不随机,由参数random控制'''
def get_random_data(annotation_line, input_shape, random=True, max_boxes=20, jitter=.3, hue=.1, sat=1.5, val=1.5, proc_img=True):
    '''random preprocessing for real-time data augmentation'''
    line = annotation_line.split()#按空格分割字符串,line[0]是图片路径
    image = Image.open(line[0])#读入图片
    iw, ih = image.size#该图片尺寸
    h, w = input_shape#规定的输入图像的尺寸
    box = np.array([np.array(list(map(int,box.split(',')))) for box in line[1:]])#截取对应的边框信息

    if not random:
        # 缩放图片,使之尺寸等于输入尺寸的整数倍,多出的部分用(128,128,128)颜色填充
        # resize image
        scale = min(w/iw, h/ih)
        nw = int(iw*scale)
        nh = int(ih*scale)
        dx = (w-nw)//2
        dy = (h-nh)//2
        image_data=0
        if proc_img:
            image = image.resize((nw,nh), Image.BICUBIC)
            new_image = Image.new('RGB', (w,h), (128,128,128))
            new_image.paste(image, (dx, dy))
            image_data = np.array(new_image)/255.# 归一化,将RGB值转换到[0,1]区间

        # 处理对应的标签,同步缩放与移动
        # correct boxes
        box_data = np.zeros((max_boxes,5))
        if len(box)>0:
            np.random.shuffle(box)
            if len(box)>max_boxes: box = box[:max_boxes]
            box[:, [0,2]] = box[:, [0,2]]*scale + dx
            box[:, [1,3]] = box[:, [1,3]]*scale + dy
            box_data[:len(box)] = box

        return image_data, box_data

    # 下面也是缩放图片,但是缩放比例为随机值,最后的尺寸仍为输入尺寸的整数倍
    # resize image
    new_ar = w/h * rand(1-jitter,1+jitter)/rand(1-jitter,1+jitter)
    scale = rand(.25, 2)
    if new_ar < 1:
        nh = int(scale*h)
        nw = int(nh*new_ar)
    else:
        nw = int(scale*w)
        nh = int(nw/new_ar)
    image = image.resize((nw,nh), Image.BICUBIC)

    # place image
    dx = int(rand(0, w-nw))
    dy = int(rand(0, h-nh))
    new_image = Image.new('RGB', (w,h), (128,128,128))
    new_image.paste(image, (dx, dy))
    image = new_image

    # 随机决定是否翻转图片,概率为50%
    # flip image or not
    flip = rand()<.5
    if flip: image = image.transpose(Image.FLIP_LEFT_RIGHT)

    # 下面的代码是对图像随机做亮度、饱和度,色调,颜色灰度扭曲之类的变换
    # distort image
    hue = rand(-hue, hue)
    sat = rand(1, sat) if rand()<.5 else 1/rand(1, sat)
    val = rand(1, val) if rand()<.5 else 1/rand(1, val)
    x = rgb_to_hsv(np.array(image)/255.)
    x[..., 0] += hue
    x[..., 0][x[..., 0]>1] -= 1
    x[..., 0][x[..., 0]<0] += 1
    x[..., 1] *= sat
    x[..., 2] *= val
    x[x>1] = 1
    x[x<0] = 0
    image_data = hsv_to_rgb(x) # numpy array, 0 to 1

    # 对标签做相同的操作
    # correct boxes
    box_data = np.zeros((max_boxes,5))
    if len(box)>0:
        np.random.shuffle(box)
        box[:, [0,2]] = box[:, [0,2]]*nw/iw + dx
        box[:, [1,3]] = box[:, [1,3]]*nh/ih + dy
        if flip: box[:, [0,2]] = w - box[:, [2,0]]
        box[:, 0:2][box[:, 0:2]<0] = 0
        box[:, 2][box[:, 2]>w] = w
        box[:, 3][box[:, 3]>h] = h
        box_w = box[:, 2] - box[:, 0]
        box_h = box[:, 3] - box[:, 1]
        box = box[np.logical_and(box_w>1, box_h>1)] # discard invalid box
        if len(box)>max_boxes: box = box[:max_boxes]
        box_data[:len(box)] = box

    return image_data, box_data

返回

train.py

"""
Retrain the YOLO model for your own dataset.
"""

import numpy as np
import keras.backend as K
from keras.layers import Input, Lambda
from keras.models import Model
from keras.optimizers import Adam
from keras.callbacks import TensorBoard, ModelCheckpoint, ReduceLROnPlateau, EarlyStopping

from yolo3.model import preprocess_true_boxes, yolo_body, tiny_yolo_body, yolo_loss
from yolo3.utils import get_random_data


def _main():
    annotation_path = 'train.txt'#标签路径
    log_dir = 'logs/000/'#权重的存储路径
    classes_path = 'model_data/voc_classes.txt'#类别路径
    anchors_path = 'model_data/yolo_anchors.txt'#anchor路径
    class_names = get_classes(classes_path)#获取类别
    num_classes = len(class_names)#类别数量
    anchors = get_anchors(anchors_path)#获取anchor

    input_shape = (416,416) # multiple of 32, hw#输入尺寸(高,宽),32的倍数

    is_tiny_version = len(anchors)==6 # default setting#是否使用简化的网络
    if is_tiny_version:#创建基于简化的网络的模型,create_tiny_model函数定义在下面,freeze_body用来计算要冻结的部分
        model = create_tiny_model(input_shape, anchors, num_classes,
            freeze_body=2, weights_path='model_data/tiny_yolo_weights.h5')
    else:#创建基于默认的网络的模型,create_model函数定义在下面
        model = create_model(input_shape, anchors, num_classes,
            freeze_body=2, weights_path='model_data/yolo_weights.h5') # make sure you know what you freeze

    #日志路径,在下面model.fit_generator()里面用到,作为callbacks的一部分
    logging = TensorBoard(log_dir=log_dir)
    #定义断点,在下面model.fit_generator()里面用到,作为callbacks的一部分
    checkpoint = ModelCheckpoint(log_dir + 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5',
        monitor='val_loss', save_weights_only=True, save_best_only=True, period=3)

    '''
    ReduceLROnPlateau为库函数,是callbacks的一种(callbacks用于指定在每个epoch开始和结束的时候进行哪种特定操作)
    该函数用于更新学习率(lr指学习率),当指标停止提升时,降低学习速率
    monitor:要监测的数量。
    factor:学习速率降低的因子。new_lr = lr * factor
    patience:没有提升的epoch数,之后学习率将降低。
    verbose:int。0:安静,1:更新消息。
    '''
    reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=3, verbose=1)

    # EarlyStopping也是callbacks的一种,可以通过在模型训练整个过程中截取保存结果最优的参数模型,防止过拟合
    early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1)

    val_split = 0.1#验证集的比例
    with open(annotation_path) as f:#打开标签文件,读入标签
        lines = f.readlines()
    np.random.seed(10101)
    np.random.shuffle(lines)#打乱顺序
    np.random.seed(None)
    num_val = int(len(lines)*val_split)#验证集的数量
    num_train = len(lines) - num_val#训练集的数量

    # 分两个阶段训练
    # 第一阶段,冻结一些层进行训练
    # Train with frozen layers first, to get a stable loss.
    # Adjust num epochs to your dataset. This step is enough to obtain a not bad model.
    if True:
        # 编译Keras模型,优化器为Adam,初始学习率为10^-3,损失函数为yolo_loss(定义在yolo3/model.py中)
        model.compile(optimizer=Adam(lr=1e-3), loss={
            # use custom yolo_loss Lambda layer.
            'yolo_loss': lambda y_true, y_pred: y_pred})

        # 批处理的大小,显存不够建议设小一点
        batch_size = 32
        print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))

        '''fit_generator功能与fit类似,不过它使用python生成器逐批生成的数据,按批次训练模型,防止内存不够
        data_generator_wrapper的定义在下面
        steps_per_epoch:每轮迭代的步数,最小为1
        validation_data:验证集
        validation_steps:停止前要验证的总步数
        epochs:训练终止时的epoch值,训练将在达到该epoch值时停止,
        当没有设置当没有设置initial_epoch时,它就是训练的总轮数,否则训练的总轮数为epochs - inital_epoch
        initial_epoch: 开始训练的轮次,在继续之前的训练时有用
        '''
        model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes),
                steps_per_epoch=max(1, num_train//batch_size),
                validation_data=data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors, num_classes),
                validation_steps=max(1, num_val//batch_size),
                epochs=50,
                initial_epoch=0,
                callbacks=[logging, checkpoint])
        model.save_weights(log_dir + 'trained_weights_stage_1.h5')#保存训练后的权重

    # 第二阶段,解冻再训练
    # Unfreeze and continue training, to fine-tune.
    # Train longer if the result is not good.
    if True:
        for i in range(len(model.layers)):
            model.layers[i].trainable = True#trainable属性控制这个变量是否可以被优化器更新

        # 编译Keras模型,优化器为Adam,初始学习率为10^-4,损失函数为yolo_loss(定义在yolo3/model.py中)
        model.compile(optimizer=Adam(lr=1e-4), loss={'yolo_loss': lambda y_true, y_pred: y_pred}) # recompile to apply the change
        print('Unfreeze all of the layers.')

        batch_size = 32 # note that more GPU memory is required after unfreezing the body
        print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
        model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes),
            steps_per_epoch=max(1, num_train//batch_size),
            validation_data=data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors, num_classes),
            validation_steps=max(1, num_val//batch_size),
            epochs=100,
            initial_epoch=50,
            callbacks=[logging, checkpoint, reduce_lr, early_stopping])
        model.save_weights(log_dir + 'trained_weights_final.h5')#保存训练后的权重

    # Further training if needed.

#读取所有的类别
def get_classes(classes_path):
    '''loads the classes'''
    with open(classes_path) as f:
        class_names = f.readlines()
    class_names = [c.strip() for c in class_names]
    return class_names

#读取所有的anchor
def get_anchors(anchors_path):
    '''loads the anchors from a file'''
    with open(anchors_path) as f:
        anchors = f.readline()
    anchors = [float(x) for x in anchors.split(',')]
    return np.array(anchors).reshape(-1, 2)

#创建训练模型,可以设置是否读取已经训练的权重
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
            weights_path='model_data/yolo_weights.h5'):
    '''create the training model'''
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))#Input()用来实例化一个keras张量
    h, w = input_shape#输入图像的高和宽
    num_anchors = len(anchors)#anchor的个数

    # 定义真实值
    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
        num_anchors//3, num_classes+5)) for l in range(3)]

    # yolo_body定义在yolo3/model.py中
    model_body = yolo_body(image_input, num_anchors//3, num_classes)
    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        #读取原先训练的权重
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body in [1, 2]:
            #冻结一些层(三个输出层除外),不让其被优化器更新
            # Freeze darknet53 body or freeze all but 3 output layers.
            num = (185, len(model_body.layers)-3)[freeze_body-1]
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))
    # 定义损失函数,用到了yolo3/model.py中的yolo_loss
    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)

    return model

#创建基于简化的网络结构的训练模型,与上面类似,只有model_body不一样
def create_tiny_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
            weights_path='model_data/tiny_yolo_weights.h5'):
    '''create the training model, for Tiny YOLOv3'''
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)

    y_true = [Input(shape=(h//{0:32, 1:16}[l], w//{0:32, 1:16}[l], \
        num_anchors//2, num_classes+5)) for l in range(2)]

    model_body = tiny_yolo_body(image_input, num_anchors//2, num_classes)
    print('Create Tiny YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body in [1, 2]:
            # Freeze the darknet body or freeze all but 2 output layers.
            num = (20, len(model_body.layers)-2)[freeze_body-1]
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.7})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)

    return model

#自定义的生成器,用来分批读入数据
def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes):
    '''data generator for fit_generator'''
    n = len(annotation_lines)
    i = 0
    while True:
        image_data = []
        box_data = []
        for b in range(batch_size):
            if i==0:
                np.random.shuffle(annotation_lines)#打乱一下顺序
            # get_random_data定义在yolo3/utils.py中,用于对输入图像做一些处理(缩放、改颜色等)
            image, box = get_random_data(annotation_lines[i], input_shape, random=True)
            image_data.append(image)#加入处理后的数据(图像)
            box_data.append(box)#加入处理后的数据(标签)
            i = (i+1) % n
        image_data = np.array(image_data)#转成numpy的形式
        box_data = np.array(box_data)#转成numpy的形式
        # preprocess_true_boxes定义在yolo3/model.py中,用于将标签转换为真实值的形式,使之能与预测值相比较
        y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes)
        # 带有 yield 的函数在 Python 中被称之为 generator(生成器),可以用来节省内存
        yield [image_data, *y_true], np.zeros(batch_size)

#用来调用上面定义的data_generator,并在调用前加了个条件判断
def data_generator_wrapper(annotation_lines, batch_size, input_shape, anchors, num_classes):
    n = len(annotation_lines)
    if n==0 or batch_size<=0: return None
    return data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes)

if __name__ == '__main__':
    _main()

返回

你可能感兴趣的:(毕业设计)