第一篇博客记录自己上周工作走的一些坑…(小白,努力学习中…)
代码地址:https://github.com/qqwweee/keras-yolo3
参考文章:https://blog.csdn.net/Patrick_Lxc/article/details/80615433
前面工作数据集创建及标注是比较简单工作,按照参考文章里进行即可。
注意一点因为我自己训练的数据类别(QR)原始代码训练好的类别中没有,因此不需要加载训练好的权重文件(资源浪费,没有意义)。如果你要训练的类别包含在原始代码训练好的类别里,你可以加载训练好的权重文件,修改yolo.cfg及类别文件,按照train.py代码冻结网络部分层,调整训练自己的网络。
若跟我一下想从头训练网络,需要更改train.py(具体代码见参考文章第八步),这里最开始我按照代码修改,但尝试训练时一直报错OSError:(不能找到?文件,就是生成权重要放到的文件夹那里),卡了挺久,最后在这篇博客下 https://blog.csdn.net/m0_37857151/article/details/81330699 找到可以直接复制的修改后的train.py,重新训练可以运行生成了自己的.h5权重文件。
"""
Retrain the YOLO model for your own dataset.
"""
import numpy as np
import keras.backend as K
from keras.layers import Input, Lambda
from keras.models import Model
from keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping
from yolo3.model import preprocess_true_boxes, yolo_body, tiny_yolo_body, yolo_loss
from yolo3.utils import get_random_data
def _main():
annotation_path = 'train.txt'
log_dir = 'logs/000/'
classes_path = 'model_data/voc_classes.txt'
anchors_path = 'model_data/yolo_anchors.txt'
class_names = get_classes(classes_path)
anchors = get_anchors(anchors_path)
input_shape = (416,416) # multiple of 32, hw
model = create_model(input_shape, anchors, len(class_names) )
train(model, annotation_path, input_shape, anchors, len(class_names), log_dir=log_dir)
def train(model, annotation_path, input_shape, anchors, num_classes, log_dir='logs/'):
model.compile(optimizer='adam', loss={
'yolo_loss': lambda y_true, y_pred: y_pred})
logging = TensorBoard(log_dir=log_dir)
checkpoint = ModelCheckpoint(log_dir + "ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5",
monitor='val_loss', save_weights_only=True, save_best_only=True, period=1)
batch_size = 10
val_split = 0.1
with open(annotation_path) as f:
lines = f.readlines()
np.random.shuffle(lines)
num_val = int(len(lines)*val_split)
num_train = len(lines) - num_val
print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
model.fit_generator(data_generator_wrap(lines[:num_train], batch_size, input_shape, anchors, num_classes),
steps_per_epoch=max(1, num_train//batch_size),
validation_data=data_generator_wrap(lines[num_train:], batch_size, input_shape, anchors, num_classes),
validation_steps=max(1, num_val//batch_size),
epochs=500,
initial_epoch=0)
model.save_weights(log_dir + 'trained_weights.h5')
def get_classes(classes_path):
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
def get_anchors(anchors_path):
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
return np.array(anchors).reshape(-1, 2)
def create_model(input_shape, anchors, num_classes, load_pretrained=False, freeze_body=False,
weights_path='model_data/yolo_weights.h5'):
K.clear_session() # get a new session
image_input = Input(shape=(None, None, 3))
h, w = input_shape
num_anchors = len(anchors)
y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
num_anchors//3, num_classes+5)) for l in range(3)]
model_body = yolo_body(image_input, num_anchors//3, num_classes)
print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))
if load_pretrained:
model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
print('Load weights {}.'.format(weights_path))
if freeze_body:
# Do not freeze 3 output layers.
num = len(model_body.layers)-3
for i in range(num): model_body.layers[i].trainable = False
print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))
model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
[*model_body.output, *y_true])
model = Model([model_body.input, *y_true], model_loss)
return model
def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes):
n = len(annotation_lines)
np.random.shuffle(annotation_lines)
i = 0
while True:
image_data = []
box_data = []
for b in range(batch_size):
i %= n
image, box = get_random_data(annotation_lines[i], input_shape, random=True)
image_data.append(image)
box_data.append(box)
i += 1
image_data = np.array(image_data)
box_data = np.array(box_data)
y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes)
yield [image_data, *y_true], np.zeros(batch_size)
def data_generator_wrap(annotation_lines, batch_size, input_shape, anchors, num_classes):
n = len(annotation_lines)
if n==0 or batch_size<=0: return None
return data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes)
if __name__ == '__main__':
_main()
后面用自己训练的权重文件进行检测时又卡壳很久,记录一下
测试模型时,参考博客中第九步修改的是yolo_video.py中的代码,可能写错了,因为看代码会发现yolo.py文件中只定义了函数,并无主函数调用。
我自己修改后测试运行仍出现问题,后来尝试直接加载原始权重文件看如何测试,具体如下,在代码中readme有写,三个步骤,先下载原始训练好的权重文件,然后在命令框代码所放路径下运行python convert.py yolov3.cfg yolov3.weights model_data/yolo.h5将权重文件转换为keras可用的.h5文件,最后是测试,分为图片模式和视频模式,分别对应下面两行代码:
我测试的是图片,运行python yolo_video.py --image,后面会让输入图片名称,输入待测试图片即可,如下图所示:
测试图片结果:
哈哈,终于会测试了,开心,等我测试完自己训练的数据效果好再来吧,嘻嘻。