- 七.正则化
愿风去了
吴恩达机器学习之正则化(Regularization)http://www.cnblogs.com/jianxinzhou/p/4083921.html从数学公式上理解L1和L2https://blog.csdn.net/b876144622/article/details/81276818虽然在线性回归中加入基函数会使模型更加灵活,但是很容易引起数据的过拟合。例如将数据投影到30维的基函数上,模
- 吴恩达机器学习全课程笔记第一篇
亿维数组
MachineLearning机器学习笔记人工智能
目录前言P1-P8监督学习无监督学习P9-P14线性回归模型成本(代价)函数P15-P20梯度下降P21-P24多类特征向量化多元线性回归的梯度下降P25-P30特征缩放检查梯度下降是否收敛学习率的选择特征工程多项式回归前言从今天开始,争取能够在开学之前(2.25)把b站上的【吴恩达机器学习】教程过一遍,并把笔记记录于此,本笔记将会把此课程每一p的重点内容及其截屏记录于此,以供大家参考和本人日后复
- 吴恩达机器学习全课程笔记第二篇
亿维数组
MachineLearning机器学习笔记人工智能学习
目录前言P31-P33logistics(逻辑)回归决策边界P34-P36逻辑回归的代价函数梯度下降的实现P37-P41过拟合问题正则化代价函数正则化线性回归正则化logistics回归前言这是吴恩达机器学习笔记的第二篇,第一篇笔记请见:吴恩达机器学习全课程笔记第一篇完整的课程链接如下:吴恩达机器学习教程(bilibili)推荐网站:scikit-learn中文社区吴恩达机器学习学习资料(gith
- 吴恩达机器学习—大规模机器学习
魏清宇
学习大数据集数据量多,模型效果肯定会比较好,但是大数据也有它自己的问题,计算复杂如果存在100000000个特征,计算量是相当大的,在进行梯度下降的时候,还要反复求损失函数的偏导数,这样一来计算量更大。那么有没有简单的方法来应对大量的数据呢?我们可以采取随机抽样,比如,抽取1000个样本进行模型的构建。那么如何决定抽取多少样本呢?可以通过学习曲线获得,随着数据量的增加,无论是偏差和误差,都会趋向于
- 吴恩达机器学习—正则化
魏清宇
过拟合问题欠拟合与过拟合当变量过少时,可能存在欠拟合;当变量过多时,会存在过拟合。过拟合可能对现有数据拟合效果较好,损失函数值几乎为零,但是不能进行泛化时,即不适于非训练集的其他数据。如何解决过拟合问题特征变量过多造成过拟合绘制假设模型图像,但当特征变量变多时,绘制很困难。当变量过多而训练数据较少时,容易出现过拟合。过拟合的解决办法解决过拟合问题,通常有两种方法:一种是减少特征的数量,可以通过人工
- 吴恩达机器学习—推荐系统
魏清宇
问题规划引例—电影推荐假设已有的数据如上所示,洋红色线内的数据表示缺失数据,那么我们如何根据已有的评分数据来预测这些缺失的数据呢?基于特征的推荐算法基于内容的推荐系统已知数据如上,有四个人对于不同电影的评分,我们还有分别表示电影包含浪漫成分和动作片成分的多少。那么每一个电影都可以用一个向量来表示,如第一个电影可以表示为,其中第一个元素为常数。那么对于每一个用户j,我们可以用一个学习算法学习参数,然
- 【吴恩达机器学习】第八周—聚类降维Kmeans算法
Sunflow007
31.jpg1.聚类(Clustering)1.1介绍之前的课程介绍的都是监督学习、而聚类属于非监督学习,在一个典型的监督学习中,我们有一个有标签的训练集,我们的目标是找到能够区分正样本和负样本的决策边界,在这里的监督学习中,我们有一系列标签,我们需要据此拟合一个假设函数。与此不同的是,在非监督学习中,我们的数据没有附带任何标签,我们拿到的数据就是这样的:1.png在这里我们有一系列点,却没有标签
- 吴恩达机器学习笔记(2)
python小白22
一.逻辑回归1.什么是逻辑回归?逻辑回归是一种预测变量为离散值0或1情况下的分类问题,在逻辑回归中,假设函数。2.模型描述在假设函数中,,为实数,为Sigmoid函数,也叫Logistic函数。模型解释:,即就是对一个输入,的概率估计。损失函数的理解:所谓最大似然估计,就是我们想知道哪套参数组合对应的曲线最可能拟合我们观测到的数据,也就是该套参数拟合出观测数据的概率最大,而损失函数的要求是预测结果
- 【Andrew Ng机器学习】单变量线性回归-模型描述
jenye_
课程:吴恩达机器学习一个监督学习的例子——房价预测使用的是一组俄勒冈州波特兰市的城市住房价格的数据。根据不同的尺寸的房间对应的不同售价,组成的数据集来画图。你有一个朋友想要卖房子,假设房子的大小是1250平方英尺,那么这套房可以卖多少钱?此时就可以进行模型拟合。根据这个模型,那么你可以告诉他这套房或许可以卖到220k。监督学习:每一个例子都有“正确的答案”,也就是说我们知道了数据集中卖出的房子的实
- ML:2-2-3 多分类问题multicalss
skylar0
分类机器学习人工智能
文章目录1.多分类问题的定义2.softmax3.神经网络的softmax输出【吴恩达机器学习65-67】1.多分类问题的定义classification问题可能的output大于2种。multiclass的预测图像可能是右侧这样的。2.softmaxsoftmaxregression算法是logisticregression的泛化(通用化)。【binaryclassification---->m
- Coursera吴恩达机器学习课程笔记——神经网络: 学习(Neural Networks: Learning)
yanglamei1962
机器学习笔记神经网络
9神经网络:学习(NeuralNetworks:Learning)9.1代价函数(CostFunction)神经网络的分类问题有两种:二元分类问题(0/1分类)只有一个输出单元(K=1K=1K=1)多元(KKK)分类问题输出单元不止一个(K>1K\gt1K>1)神经网络的代价函数公式:hΘ(x)=a(L)=g(Θ(L−1)a(L−1))=g(z(L))h_\Theta(x)=a^{(L)}=g(\
- 吴恩达机器学习笔记十二 Sigmoid激活函数的替代方案 激活函数的选择 为什么要使用激活函数
爱学习的小仙女!
机器学习机器学习人工智能
在需求预测案例中,awareness这个输入可能不是二元(binary)的,或许是一点(alittlebit)、有些(somewhat)或完全(extremely),此时相比将awareness规定为0、1,不如考虑概率,认为它是一个0-1之间的数。激活函数可以采用ReLU函数(rectifiedlinearunit)三个常用的激活函数使用线性激活函数也可以看作是没有激活函数。激活函数的选择输出层
- 吴恩达机器学习笔记十 神经网络 TensorFlow 人工智能
爱学习的小仙女!
机器学习神经网络人工智能深度学习
神经网络:说几层的时候是指隐藏层及输出层,不包含输入层。例如下图是一个四层神经网络。前向传播(forwardpropagation)越靠近输出层,该层的神经元数量越少TensorFlow(张量流)实现神经网络的搭建sequential()把两层顺序连接起来;如果有新的x,用predict()人工智能
- 吴恩达机器学习- 正则化
YANWeichuan
过拟合和欠拟合定义和形态解决方法减少特征值数量正则化正则化惩罚θ系数线性回归正则化逻辑回归正则化
- 最强机器学习入门博客(吴恩达机器学习课程总结)
PengHao666999
机器学习人工智能
机器学习的概述诞生现实生活许多领域的问题不能通过显式编程实现,比如制造自动驾驶汽车、智能工厂、规模农业、计算机视觉等等,一种好的实现方式是通过学习算法让计算机自己学习如何做。现在现在是学习机器学习最好的时机,因为机器学习在未来能产生巨大的价值未来机器学习在软件领域方面取得了巨大的价值,比如智能推荐,网络搜索,图像识别等机器学习在许多其他的领域仍有巨大的价值,比如未来在自动驾驶汽车,工厂,农业,医疗
- 在学习吴恩达机器学习课程中遇到的一些问题
ttyykx
学习机器学习jupyter
C1_W1_Lab04_Cost_function_Soln中遇到的一些问题1、importnumpyasnp%matplotlibnotebookimportmatplotlib.pyplotaspltfromlab_utils_uniimportplt_intuition,plt_stationary,plt_update_onclick,soup_bowlplt.style.use('./d
- 吴恩达机器学习Coursera-week11
geekpy
PhotoOCR在此章的课程中,Andrew主要是想通过OCR问题的解决来阐释在实际项目中我们应该如何定义问题,并将一个大问题分解为多个小问题,并通过pipeline的方式将对这些小问题的解决方案串联起来,从而解决这个大问题。我认为这是解决实际问题的一个经典的方法论,有助于我们在实际工作和生活中更好地思考问题,分解问题,并最终解决问题。ProblemDescriptionandPipeline此小
- 吴恩达机器学习介绍第一章介绍
清☆茶
机器学习人工智能
1.机器学习的概念在进行特定编程的情况下,给予计算机学习的能力。机器学习是一种人工智能的分支,它关注如何通过计算机算法和模型来使计算机系统从数据中学习和改进。机器学习的目标是让计算机系统能够自动分析和理解数据,并根据数据的模式和规律做出预测和决策,而无需明确的编程指令。机器学习可以分为监督学习、无监督学习和强化学习三种类型。在监督学习中,计算机系统通过使用带有标签的训练数据来学习模式和规律,然后根
- 【Andrew Ng机器学习】单变量线性回归-梯度下降
jenye_
课程:吴恩达机器学习此篇我们将学习梯度下降算法,我们之前已经定义了代价函数J,梯度下降法可以将代价函数J最小化。梯度下降是很常用的算法,他不仅被用在线性回归上,还被广泛应用与机器学习的众多领域。之后,我们也会用到梯度下降法最小化其他函数,而不仅仅是最小化线性回归的额代价函数J。我们的问题我们有一个代价函数J(\theta_0|theta_1$),可能是线性回归的代价函数,也可能是其他需要最小化的函
- 第八章 正则化
tomas家的小拨浪鼓
该系列文章为,观看“吴恩达机器学习”系列视频的学习笔记。虽然每个视频都很简单,但不得不说每一句都非常的简洁扼要,浅显易懂。非常适合我这样的小白入门。本章含盖8.1过拟合问题8.2代价函数8.3线性回归的正则化8.4Logistic回归的正则化8.1过拟合问题在将线性回归和logistic回归应用到某些机器学习应用中时,会出现过度拟合问题,导致它们表现欠佳。正则化能够改善或者减少过度拟合问题。什么是
- 2022-12-14科研日志
独孤西
今天主要学习了吴恩达机器学习的网课,又复习了一下机器学习;然后看了看VIO相关资料论文,今天看了几篇知网上搜到的关于VIO的硕士博士毕业论文和一篇20年的VIO综述,这方面的论文对于一个领域一般都有比较全面的描述。通过阅读我也了解了VIO领域的一些典型成果。VIO主流成果VIO是属于SLAM领域中的一个子课题,典型的VIO系统同样是由前端、后端、回环检测等几部分构成的。VIO的前端按是否提取特征点
- 吴恩达机器学习笔记-Logistic回归模型
Carey_Wu
回归函数在逻辑回归模型中我们不能再像之前的线性回归一样使用相同的代价函数,否则会使得输出的结果图像呈现波浪状,也就是说不再是个凸函数。代价函数的表达式之前有表示过,这里我们把1/2放到求和里面来。这里的求和部分我们可以表示为:很显然,如果我们把在之前说过的分类问题的假设函数带进去,即,得到的结果可能就是上述所说的不断起伏的状况。如果这里使用梯度下降法,不能保证能得到全局收敛的值,这个函数就是所谓的
- 吴恩达机器学习笔记(1)
python小白22
一.初识机器学习1.监督学习在监督学习中,训练数据既有特征又有标签,通过训练,让机器可以自己找到特征和标签之间的联系,在面对只有特征没有标签的数据时,可以判断出标签。监督学习可以分为回归问题和分类问题。回归问题是利用训练出的模型,预测连续的数值输出;分类问题是预测离散值的输出。2.无监督学习无监督学习是给算法大量的数据,要求它找出数据的类型结构。无监督学习的数据没有标签,或是所有数据都是同一种标签
- ML:2-2neural network layer
skylar0
机器学习
文章目录1.神经网络层2.更复杂的神经网络3.神经网络的前向传播【吴恩达机器学习笔记p47-49】1.神经网络层【了解神经网络如何完成预测的】input:4个数字的向量。3个神经元分别做logisticregression。下角标:标识第i个神经元的值。上角标:表示第j层layer的值。这3个神经元所做的logisticregression的结果组成了一个向量a将传给ouputlayer。第1层的
- ML:5-1 neural networks
skylar0
机器学习
文章目录course2框架1.neuralnetworks(deeplearning)2.DemandPrediction【吴恩达机器学习p43-46】course2框架一、neuralnetworks-inference(预测)二、neuralnetworks-training三、practiceadviceforbuildingmachinelearningsystems四、decisiont
- 吴恩达机器学习笔记(1)——单变量线性回归
机智的神棍酱
上一个笔记,我们大概了解了什么是机器学习以及机器学习的两个重要的分类,本篇笔记将带领大家了解机器学习的第一个模型——线性回归例题为了让大家更加直观的理解这个模型,我们引入一个例题,我们有一组波特兰市的城市住房的价格数据,我们要通过这些数据来找出一个函数,来预测任意面积下的房价,这就是一个简单的线性回归问题。这里给出的数据是一组房子面积对应的房价数据集其中m代表训练集,x是输入,y是输出。我们用(x
- 【吴恩达机器学习】第一周课程笔记
Estella_07
机器学习笔记人工智能
Hello,这里是小梁。下面是我近期学习机器学习的笔记,出发点是希望对自己起到一个督促和输出的作用如果你对我的笔记感兴趣欢迎Like,有不足之处也欢迎评论留言B站【2022吴恩达机器学习Deeplearning.ai课程】笔记参考【吴恩达《MachineLearning》精炼笔记】1机器学习的定义与分类1.1监督学习Supervisedlearning1.2无监督学习Unsupervisedlea
- 吴恩达机器学习笔记
AADGSEGA
机器学习
吴恩达机器学习笔记第一周基本概念监督学习分为回归算法和分类算法无监督学习事先没有正确答案。例如将客户群分成不同类,混合的声音区分开先在Octave或者matlab实现,可行,再尝试用Java或者python或者C++重新写出来只考虑两个变量的线性回归:例如找出一条函数拟合房价的那个例子里面的数据点。数据集:输入x[i],输出y[i],中间函数是h。使用成本函数(即方差误差,这里假设是只有房屋大小这
- ML学习安排和资源链接
Nice night
#ML吴恩达机器学习
第一阶段:学习前置数学知识机器学习的数学基础_二进制人工智能的博客-CSDN博客第二阶段:认知机器学习吴恩达机器学习【2022中文版教程全集】_哔哩哔哩_bilibili视频5h,看了一点发现后面没字幕了,这个(强推|双字)2022吴恩达机器学习Deeplearning.ai课程_哔哩哔哩_bilibili视频19h。但是这个是属于新课,所以还是先看第三阶段上:仔细了解机器学习视频链接:[中英字幕
- 深度学习学习顺序梳理
陌上阳光
深度学习深度学习人工智能
https://www.bilibili.com/video/BV1to4y1G7xq/?spm_id_from=333.999.0.0&vd_source=9607a6d9d829b667f8f0ccaaaa142fcb1.吴恩达机器学习课程已学完,时间较久了,后续可以重新听一遍,整理一下笔记2.白板推导读西瓜书统计学习方法看完了,时间也比较久了,重新看一遍整理笔记西瓜书,没看完过,后续再看3.
- linux系统服务器下jsp传参数乱码
3213213333332132
javajsplinuxwindowsxml
在一次解决乱码问题中, 发现jsp在windows下用js原生的方法进行编码没有问题,但是到了linux下就有问题, escape,encodeURI,encodeURIComponent等都解决不了问题
但是我想了下既然原生的方法不行,我用el标签的方式对中文参数进行加密解密总该可以吧。于是用了java的java.net.URLDecoder,结果还是乱码,最后在绝望之际,用了下面的方法解决了
- Spring 注解区别以及应用
BlueSkator
spring
1. @Autowired
@Autowired是根据类型进行自动装配的。如果当Spring上下文中存在不止一个UserDao类型的bean,或者不存在UserDao类型的bean,会抛出 BeanCreationException异常,这时可以通过在该属性上再加一个@Qualifier注解来声明唯一的id解决问题。
2. @Qualifier
当spring中存在至少一个匹
- printf和sprintf的应用
dcj3sjt126com
PHPsprintfprintf
<?php
printf('b: %b <br>c: %c <br>d: %d <bf>f: %f', 80,80, 80, 80);
echo '<br />';
printf('%0.2f <br>%+d <br>%0.2f <br>', 8, 8, 1235.456);
printf('th
- config.getInitParameter
171815164
parameter
web.xml
<servlet>
<servlet-name>servlet1</servlet-name>
<jsp-file>/index.jsp</jsp-file>
<init-param>
<param-name>str</param-name>
- Ant标签详解--基础操作
g21121
ant
Ant的一些核心概念:
build.xml:构建文件是以XML 文件来描述的,默认构建文件名为build.xml。 project:每个构建文
- [简单]代码片段_数据合并
53873039oycg
代码
合并规则:删除家长phone为空的记录,若一个家长对应多个孩子,保留一条家长记录,家长id修改为phone,对应关系也要修改。
代码如下:
- java 通信技术
云端月影
Java 远程通信技术
在分布式服务框架中,一个最基础的问题就是远程服务是怎么通讯的,在Java领域中有很多可实现远程通讯的技术,例如:RMI、MINA、ESB、Burlap、Hessian、SOAP、EJB和JMS等,这些名词之间到底是些什么关系呢,它们背后到底是基于什么原理实现的呢,了解这些是实现分布式服务框架的基础知识,而如果在性能上有高的要求的话,那深入了解这些技术背后的机制就是必须的了,在这篇blog中我们将来
- string与StringBuilder 性能差距到底有多大
aijuans
之前也看过一些对string与StringBuilder的性能分析,总感觉这个应该对整体性能不会产生多大的影响,所以就一直没有关注这块!
由于学程序初期最先接触的string拼接,所以就一直没改变过自己的习惯!
- 今天碰到 java.util.ConcurrentModificationException 异常
antonyup_2006
java多线程工作IBM
今天改bug,其中有个实现是要对map进行循环,然后有删除操作,代码如下:
Iterator<ListItem> iter = ItemMap.keySet.iterator();
while(iter.hasNext()){
ListItem it = iter.next();
//...一些逻辑操作
ItemMap.remove(it);
}
结果运行报Con
- PL/SQL的类型和JDBC操作数据库
百合不是茶
PL/SQL表标量类型游标PL/SQL记录
PL/SQL的标量类型:
字符,数字,时间,布尔,%type五中类型的
--标量:数据库中预定义类型的变量
--定义一个变长字符串
v_ename varchar2(10);
--定义一个小数,范围 -9999.99~9999.99
v_sal number(6,2);
--定义一个小数并给一个初始值为5.4 :=是pl/sql的赋值号
- Mockito:一个强大的用于 Java 开发的模拟测试框架实例
bijian1013
mockito单元测试
Mockito框架:
Mockito是一个基于MIT协议的开源java测试框架。 Mockito区别于其他模拟框架的地方主要是允许开发者在没有建立“预期”时验证被测系统的行为。对于mock对象的一个评价是测试系统的测
- 精通Oracle10编程SQL(10)处理例外
bijian1013
oracle数据库plsql
/*
*处理例外
*/
--例外简介
--处理例外-传递例外
declare
v_ename emp.ename%TYPE;
begin
SELECT ename INTO v_ename FROM emp
where empno=&no;
dbms_output.put_line('雇员名:'||v_ename);
exceptio
- 【Java】Java执行远程机器上Linux命令
bit1129
linux命令
Java使用ethz通过ssh2执行远程机器Linux上命令,
封装定义Linux机器的环境信息
package com.tom;
import java.io.File;
public class Env {
private String hostaddr; //Linux机器的IP地址
private Integer po
- java通信之Socket通信基础
白糖_
javasocket网络协议
正处于网络环境下的两个程序,它们之间通过一个交互的连接来实现数据通信。每一个连接的通信端叫做一个Socket。一个完整的Socket通信程序应该包含以下几个步骤:
①创建Socket;
②打开连接到Socket的输入输出流;
④按照一定的协议对Socket进行读写操作;
④关闭Socket。
Socket通信分两部分:服务器端和客户端。服务器端必须优先启动,然后等待soc
- angular.bind
boyitech
AngularJSangular.bindAngularJS APIbind
angular.bind 描述: 上下文,函数以及参数动态绑定,返回值为绑定之后的函数. 其中args是可选的动态参数,self在fn中使用this调用。 使用方法: angular.bind(se
- java-13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class KickOutBadGuys {
/**
* 题目:13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
* Maybe you can find out
- Redis.conf配置文件及相关项说明(自查备用)
Kai_Ge
redis
Redis.conf配置文件及相关项说明
# Redis configuration file example
# Note on units: when memory size is needed, it is possible to specifiy
# it in the usual form of 1k 5GB 4M and so forth:
#
- [强人工智能]实现大规模拓扑分析是实现强人工智能的前奏
comsci
人工智能
真不好意思,各位朋友...博客再次更新...
节点数量太少,网络的分析和处理能力肯定不足,在面对机器人控制的需求方面,显得力不从心....
但是,节点数太多,对拓扑数据处理的要求又很高,设计目标也很高,实现起来难度颇大...
- 记录一些常用的函数
dai_lm
java
public static String convertInputStreamToString(InputStream is) {
StringBuilder result = new StringBuilder();
if (is != null)
try {
InputStreamReader inputReader = new InputStreamRead
- Hadoop中小规模集群的并行计算缺陷
datamachine
mapreducehadoop并行计算
注:写这篇文章的初衷是因为Hadoop炒得有点太热,很多用户现有数据规模并不适用于Hadoop,但迫于扩容压力和去IOE(Hadoop的廉价扩展的确非常有吸引力)而尝试。尝试永远是件正确的事儿,但有时候不用太突进,可以调优或调需求,发挥现有系统的最大效用为上策。
-----------------------------------------------------------------
- 小学4年级英语单词背诵第二课
dcj3sjt126com
englishword
egg 蛋
twenty 二十
any 任何
well 健康的,好
twelve 十二
farm 农场
every 每一个
back 向后,回
fast 快速的
whose 谁的
much 许多
flower 花
watch 手表
very 非常,很
sport 运动
Chinese 中国的
- 自己实践了github的webhooks, linux上面的权限需要注意
dcj3sjt126com
githubwebhook
环境, 阿里云服务器
1. 本地创建项目, push到github服务器上面
2. 生成www用户的密钥
sudo -u www ssh-keygen -t rsa -C "
[email protected]"
3. 将密钥添加到github帐号的SSH_KEYS里面
3. 用www用户执行克隆, 源使
- Java冒泡排序
蕃薯耀
冒泡排序Java冒泡排序Java排序
冒泡排序
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 10:40:14 星期二
http://fanshuyao.iteye.com/
- Excle读取数据转换为实体List【基于apache-poi】
hanqunfeng
apache
1.依赖apache-poi
2.支持xls和xlsx
3.支持按属性名称绑定数据值
4.支持从指定行、列开始读取
5.支持同时读取多个sheet
6.具体使用方式参见org.cpframework.utils.excelreader.CP_ExcelReaderUtilTest.java
比如:
Str
- 3个处于草稿阶段的Javascript API介绍
jackyrong
JavaScript
原文:
http://www.sitepoint.com/3-new-javascript-apis-may-want-follow/?utm_source=html5weekly&utm_medium=email
本文中,介绍3个仍然处于草稿阶段,但应该值得关注的Javascript API.
1) Web Alarm API
&
- 6个创建Web应用程序的高效PHP框架
lampcy
Web框架PHP
以下是创建Web应用程序的PHP框架,有coder bay网站整理推荐:
1. CakePHP
CakePHP是一个PHP快速开发框架,它提供了一个用于开发、维护和部署应用程序的可扩展体系。CakePHP使用了众所周知的设计模式,如MVC和ORM,降低了开发成本,并减少了开发人员写代码的工作量。
2. CodeIgniter
CodeIgniter是一个非常小且功能强大的PHP框架,适合需
- 评"救市后中国股市新乱象泛起"谣言
nannan408
首先来看百度百家一位易姓作者的新闻:
三个多星期来股市持续暴跌,跌得投资者及上市公司都处于极度的恐慌和焦虑中,都要寻找自保及规避风险的方式。面对股市之危机,政府突然进入市场救市,希望以此来重建市场信心,以此来扭转股市持续暴跌的预期。而政府进入市场后,由于市场运作方式发生了巨大变化,投资者及上市公司为了自保及为了应对这种变化,中国股市新的乱象也自然产生。
首先,中国股市这两天
- 页面全屏遮罩的实现 方式
Rainbow702
htmlcss遮罩mask
之前做了一个页面,在点击了某个按钮之后,要求页面出现一个全屏遮罩,一开始使用了position:absolute来实现的。当时因为画面大小是固定的,不可以resize的,所以,没有发现问题。
最近用了同样的做法做了一个遮罩,但是画面是可以进行resize的,所以就发现了一个问题,当画面被reisze到浏览器出现了滚动条的时候,就发现,用absolute 的做法是有问题的。后来改成fixed定位就
- 关于angularjs的点滴
tntxia
AngularJS
angular是一个新兴的JS框架,和以往的框架不同的事,Angularjs更注重于js的建模,管理,同时也提供大量的组件帮助用户组建商业化程序,是一种值得研究的JS框架。
Angularjs使我们可以使用MVC的模式来写JS。Angularjs现在由谷歌来维护。
这里我们来简单的探讨一下它的应用。
首先使用Angularjs我
- Nutz--->>反复新建ioc容器的后果
xiaoxiao1992428
DAOmvcIOCnutz
问题:
public class DaoZ {
public static Dao dao() { // 每当需要使用dao的时候就取一次
Ioc ioc = new NutIoc(new JsonLoader("dao.js"));
return ioc.get(