TensorBoard可视化命令

import tensorflow as tf
import numpy as np

def add_layer(inputs, in_size, out_size, n_layer, activation_function=None):
    layer_name = 'layer%s' % n_layer
    with tf.name_scope("layer"):
        with tf.name_scope("weight"):
            Weights = tf.Variable(tf.random_normal([in_size,out_size]),name="W")
            tf.summary.histogram(layer_name+'/Weights',Weights)
        with tf.name_scope("biases"):
            biases = tf.Variable(tf.zeros([1, out_size])+0.1,name="b")
            tf.summary.histogram(layer_name+'/biases',biases)
        with tf.name_scope("Wx_plus_b"):
            Wx_plus_b = tf.matmul(inputs, Weights)+biases
        if activation_function == None:
            outputs = Wx_plus_b
        else:
            outputs = activation_function(Wx_plus_b)
            tf.summary.histogram(layer_name+'/outputs',outputs)
        return outputs

x_data = np.linspace(-1,1,300)[:,np.newaxis]
noise = np.random.normal(0,0.05,x_data.shape)
y_data = np.square(x_data) - 0.5 + noise

with tf.name_scope("inputs"):
    xs = tf.placeholder(tf.float32,[None,1],name="x_input")
    ys = tf.placeholder(tf.float32,[None,1],name="y_input")

l1 = add_layer(xs, 1, 10, n_layer=1, activation_function=tf.nn.relu)
prediction = add_layer(l1, 10, 1, n_layer=2, activation_function=None)

with tf.name_scope("losskk"):
    loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1]),name="losskk")
    tf.summary.scalar('loss',loss)
with tf.name_scope("train"):
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

init = tf.global_variables_initializer()
sess = tf.Session()
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter("logss",sess.graph)
sess.run(init)

for i in range(1000):
    sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
    if i%50==0:
        result = sess.run(merged,feed_dict={xs:x_data,ys:y_data})
        writer.add_summary(result,i)
代码如上,保存运行之后会在相应的文件夹下生成文件。此时执行在pycharm左下角的Terminal窗口输入如下命令 ,则会弹出相应的网址,打开即为可视化过程!

tensorboard --logdir=文件名

你可能感兴趣的:(机器学习)