树和二叉树——二叉树算法库

/*      
*Copyright (c) 2015 , 烟台大学计算机学院      
*All right resvered .      
*文件名称: 树和二叉树.cpp      
*作    者: 郑兆涵      
*树和二叉树————二叉树算法库
*/ 


 

问题:定义二叉树的链式存储结构,实现其基本运算,并完成测试

要求:
①.头文件btree.h中定义数据结构并声明用于完成基本运算的函数。对应基本运算的函数包括:
void CreateBTNode(BTNode *&b,char *str);        //由str串创建二叉链
BTNode *FindNode(BTNode *b,ElemType x);     //返回data域为x的节点指针
BTNode *LchildNode(BTNode *p);      //返回*p节点的左孩子节点指针
BTNode *RchildNode(BTNode *p);      //返回*p节点的右孩子节点指针
int BTNodeDepth(BTNode *b);     //求二叉树b的深度
void DispBTNode(BTNode *b);     //以括号表示法输出二叉树
void DestroyBTNode(BTNode *&b);     //销毁二叉树

②.在btree.cpp中实现这些函数
 
③.在main函数中完成测试,包括如下内容:
(1)用”A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))”
(2)输出二叉树
(3)查找值为’H’的节点,若找到,输出值为’H’的节点的左、右孩子的值
(4)求高度二叉树高度
(5)销毁二叉树

注:创建如图的二叉树用于测试:

树和二叉树——二叉树算法库_第1张图片

 

编程代码:

//头文件:btree.h,包含定义顺序表数据结构的代码、宏定义、要实现算法的函数的声明
#ifndef BTREE_H_INCLUDED
#define BTREE_H_INCLUDED
#define MaxSize 100
typedef char ElemType;
typedef struct node
{
    ElemType data;              //数据元素
    struct node *lchild;        //指向左孩子
    struct node *rchild;        //指向右孩子
} BTNode;
void CreateBTNode(BTNode *&b,char *str);        //由str串创建二叉链
BTNode *FindNode(BTNode *b,ElemType x);     //返回data域为x的节点指针
BTNode *LchildNode(BTNode *p);  //返回*p节点的左孩子节点指针
BTNode *RchildNode(BTNode *p);  //返回*p节点的右孩子节点指针
int BTNodeDepth(BTNode *b); //求二叉树b的深度
void DispBTNode(BTNode *b); //以括号表示法输出二叉树
void DestroyBTNode(BTNode *&b);  //销毁二叉树
#endif // BTREE_H_INCLUDED

//源文件:btree.cpp,包含实现各种算法的函数的定义
#include 
#include 
#include "btree.h"
void CreateBTNode(BTNode *&b,char *str)     //由str串创建二叉链
{
    BTNode *St[MaxSize],*p=NULL;
    int top=-1,k,j=0;
    char ch;
    b=NULL;             //建立的二叉树初始时为空
    ch=str[j];
    while (ch!='\0')    //str未扫描完时循环
    {
        switch(ch)
        {
        case '(':
            top++;
            St[top]=p;
            k=1;
            break;      //为左节点
        case ')':
            top--;
            break;
        case ',':
            k=2;
            break;                          //为右节点
        default:
            p=(BTNode *)malloc(sizeof(BTNode));
            p->data=ch;
            p->lchild=p->rchild=NULL;
            if (b==NULL)                    //p指向二叉树的根节点
                b=p;
            else                            //已建立二叉树根节点
            {
                switch(k)
                {
                case 1:
                    St[top]->lchild=p;
                    break;
                case 2:
                    St[top]->rchild=p;
                    break;
                }
            }
        }
        j++;
        ch=str[j];
    }
}
BTNode *FindNode(BTNode *b,ElemType x)  //返回data域为x的节点指针
{
    BTNode *p;
    if (b==NULL)
        return NULL;
    else if (b->data==x)
        return b;
    else
    {
        p=FindNode(b->lchild,x);
        if (p!=NULL)
            return p;
        else
            return FindNode(b->rchild,x);
    }
}
BTNode *LchildNode(BTNode *p)   //返回*p节点的左孩子节点指针
{
    return p->lchild;
}
BTNode *RchildNode(BTNode *p)   //返回*p节点的右孩子节点指针
{
    return p->rchild;
}
int BTNodeDepth(BTNode *b)  //求二叉树b的深度
{
    int lchilddep,rchilddep;
    if (b==NULL)
        return(0);                          //空树的高度为0
    else
    {
        lchilddep=BTNodeDepth(b->lchild);   //求左子树的高度为lchilddep
        rchilddep=BTNodeDepth(b->rchild);   //求右子树的高度为rchilddep
        return (lchilddep>rchilddep)? (lchilddep+1):(rchilddep+1);
    }
}
void DispBTNode(BTNode *b)  //以括号表示法输出二叉树
{
    if (b!=NULL)
    {
        printf("%c",b->data);
        if (b->lchild!=NULL || b->rchild!=NULL)
        {
            printf("(");
            DispBTNode(b->lchild);
            if (b->rchild!=NULL) printf(",");
            DispBTNode(b->rchild);
            printf(")");
        }
    }
}
void DestroyBTNode(BTNode *&b)   //销毁二叉树
{
    if (b!=NULL)
    {
        DestroyBTNode(b->lchild);
        DestroyBTNode(b->rchild);
        free(b);
    }
}

//在建立算法库过程中,为了完成测试,再同一项目(project)中建立一个源文件(如main.cpp),编制main函数,完成相关的测试工作。 
#include 
#include "btree.h"
int main()
{
    BTNode *b,*p,*lp,*rp;;
    printf("  (1)创建二叉树:");
    CreateBTNode(b,"A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))");
    printf("\n");
    printf("  (2)输出二叉树:");
    DispBTNode(b);
    printf("\n");
    printf("  (3)查找H节点:");
    p=FindNode(b,'H');
    if (p!=NULL)
    {
        lp=LchildNode(p);
        if (lp!=NULL)
            printf("左孩子为%c ",lp->data);
        else
            printf("无左孩子 ");
        rp=RchildNode(p);
        if (rp!=NULL)
            printf("右孩子为%c",rp->data);
        else
            printf("无右孩子 ");
    }
    else
        printf(" 未找到!");
    printf("\n");
    printf("  (4)二叉树b的深度:%d\n",BTNodeDepth(b));
    printf("  (5)释放二叉树b\n");
    DestroyBTNode(b);
    return 0;
}


输出结果:

树和二叉树——二叉树算法库_第2张图片

 

代码分析:

一、创建二叉树CreateBTNode(*b,*str)
采用括号表示法表示的二叉树字符串str,用ch扫描str,其中有三类字符需要处理:
(1).ch="(" 表示前面刚刚创建的节点*p存在孩子节点,需要将其进栈,用来建立它与孩子节点的关系,再处理孩子节点,此时k=1,表示其后面创建的节点将作为这个节点(栈顶节点)的左孩子节点。(注:若一个节点刚创建后,后面的字符不是"(",则表示该节点是叶子节点,不需要再进栈了。)
(2).ch=")" 表示根节点为栈顶节点的子树创建完毕,并且完成所需要的退栈工作。
(3).ch="," 表示接下来处理双亲节点的右孩子节点,此时k=2。
观察此创建二叉树的函数,通过循环处理str,在算法中用一个栈St保存双亲节点,top为栈顶指针,k指定其后面为左孩子节点(k=1)还是右孩子节点(k=2)。
而由此图输出的括号法二叉树过程应为:(以A的左孩子节点B举例分析)
1.建立A节点,*b为指针,则b指向A节点,得到"A"
2.A节点进栈,置k=1,得到"("
3.建立B节点,因为k=1,所以将其作为A节点的左孩子节点,得到"B"
4.B节点进栈,置k=1,得到"("
5.建立D节点,因为k=1,所以将其作为B节点的左孩子节点,得到"D"
6.因为D再无孩子节点,而D有右兄弟节点E(B的右孩子节点),置k=2,得到","
7.建立E节点,因为k=2,所以将其作为B节点的右孩子节点,得到"E"
8.E节点进栈,置k=1,得到"("
9.建立H节点,因为k=1,所以将其作为E节点的左孩子节点,得到"H"
10.H节点进栈,置k=1,得到"("
11.建立J节点,因为k=1,所以将其作为H节点的左孩子节点,得到"J"
12.因J再无孩子节点,而J有右兄弟节点K(H的右孩子节点),置k=2,得到"," 
13.K节点进栈,置k=1,得到"("
14.建立L节点,因为k=1,所以将其作为K节点的左孩子节点,得到"L"
15.因L再无孩子节点,而L有右兄弟节点M(K的右孩子节点),置k=2,得到","
16.建立M节点,因为k=2,所以将其作为K节点的右孩子节点,得到"M"
17.M节点进栈,置k=1,得到"("
18.因M节点只有右孩子节点),置k=2,得到","
19.建立N节点,因为k=2,所以将其作为M节点的右孩子节点,得到"N"
20.此时A的左孩子节点开始的二叉树已全部分析完毕,只需要进行退栈处理
21.N→M退栈一次,得到")"
22.M→K退栈一次,得到")"
23.K→H退栈一次,得到")"
24.H→E退栈一次,得到")"
25.E→B退栈一次,得到")"
26.关于以A的有孩子节点C开始的二叉树也是相同道理。

 

二、查找节点FindNode(*b,x)
采用递归算法f(b,x)在二叉树b中查找值为x的节点,找到后返回指针,否则返回NULL。

采用的顺序是:“根——左树——右树”的顺序。

(1)首先判断所查找的数的所在树是否为空。

(2)再判断b->data是否是x,若是,则所查找的数为该树的根节点,直接返回即可。

(3)若所查找的数既不是空树,也不是所在树的根节点,就需要查找左右子树了。

(4)直接调用FindNode(b->lchild,x),在FindNode函数中再次调用此函数,这正是递归,若找到,即可把结果x赋值给p,若找不到,则p的值为NULL。

(5)判断是否p的值为NULL,若不是则直接返回,若p=NULL则还需要调用FindNode(b->rchild,x),再次进行递归算法。

(6)最终得到p值返回即可得到最终结果。


三、求高度BTNodeDepth(*b)
求二叉树的高度的递归模型为:
f(b)=0
f(B)=MAX{f(b->lchild),f(b->rchild)}+1

树和二叉树——二叉树算法库_第3张图片

 

四、输出二叉树DispBTNode(*b)
对于该二叉树b,先输出b所指节点的值,也就是根A的值,当*b节点存在左孩子节点或者右孩子节点的时候,输出一个"("符号,然后递归处理左子树;当双亲节点没有左孩子节点,只有有孩子节点的时候,输出",",递归处理右子树,最后输出一个")"。

 

你可能感兴趣的:(数据结构,学习历程)