[hdu6230]Palindrome

Time Limit: 6000/3000 MS (Java/Others)
Memory Limit: 262144/262144 K (Java/Others)

Problem Description
Alice like strings, especially long strings. For each string, she has a special evaluation system to judge how elegant the string is. She defines that a string S [ 1..3 n − 2 ] ( n ≥ 2 ) S[1..3n−2](n≥2) S[1..3n2](n2) is one-and-half palindromic if and only if it satisfies S [ i ] = S [ 2 n − i ] = S [ 2 n + i − 2 ] ( 1 ≤ i ≤ n ) S[i]=S[2n−i]=S[2n+i−2](1≤i≤n) S[i]=S[2ni]=S[2n+i2](1in).For example, a b c b a b c abcbabc abcbabc is one-and-half palindromic string, and a b c c b a a b c abccbaabc abccbaabc is not. Now, Alice has generated some long strings. She ask for your help to find how many substrings which is one-and-half palindromic.

Input
The first line is the number of test cases. For each test case, there is only one line containing a string(the length of strings is less than or equal to 500000 500000 500000), this string only consists of lowercase letters.

Output
For each test case, output a integer donating the number of one-and-half palindromic substrings.

Sample Input

1
ababcbabccbaabc

Sample Output

2

Hint

In the example input, there are two substrings which are one-and-half palindromic strings, a b a b abab abab and a b c b a b c abcbabc abcbabc.

题意:
输出字符串s中,"一又一半字符串"的数量
“一又一半字符串” : 字符串 S [ 1..3 n − 2 ] ( n ≥ 2 ) S[1..3n−2](n≥2) S[1..3n2](n2),满足了 S [ i ] = S [ 2 n − i ] = S [ 2 n + i − 2 ] ( 1 ≤ i ≤ n ) S[i]=S[2n−i]=S[2n+i−2](1≤i≤n) S[i]=S[2ni]=S[2n+i2](1in)

题解:
很显然这个字符串是一个奇数长度的字符串。
我们先用马拉车做出对于每个中点 i i i的最长回文串长度的半径 r [ i ] r[i] r[i]
然后很显然,我们考虑两个拼在一起的回文串的中点 i , j ( i > j ) i,j(i>j) i,j(i>j)
只需要满足 j + r [ j ] − 1 < = i j+r[j]-1<=i j+r[j]1<=i i − r [ i ] + 1 > = j i-r[i]+1>=j ir[i]+1>=j
那么我们把所有 i − r [ i ] + 1 i-r[i]+1 ir[i]+1相同的 i i i存在一起
然后枚举 j = i − r [ i ] + 1 j=i-r[i]+1 j=ir[i]+1,把所有的这些 i i i的树状数组位置都+1
然后查询区间 [ j , j + r [ j ] − 1 ] [j,j+r[j]-1] [j,j+r[j]1]区间的元素之和。

#include
#define ll long long
using namespace std;
inline int lowbit(int x){return x&(-x);}
char s[500004];
int n,r[500004];
int tr[500004];
vector<int>vec[500004];
ll ans;
void add(int x){
    for(int i=x;i<=n;i+=lowbit(i))tr[i]++;
}
int ask(int x){
    int ret=0;
    for(int i=x;i>0;i-=lowbit(i))ret+=tr[i];
    return ret;
}
int w33ha(){
    ans=0;
    scanf("%s",s);
    n=strlen(s);
    for(int i=0;i<=n;i++)tr[i]=0;
    for(int i=0;i<=n;i++)vec[i].clear();
    for(int i=0;i<n;i++)r[i]=0;
    int mx=0,id=0;
    for(int i=0;i<n;i++){
        r[i]=(mx>i)?min(r[id*2-i],mx-i):1;
        while(i-r[i]>=0&&i+r[i]<n&&s[i-r[i]]==s[i+r[i]])r[i]++;
        if(i+r[i]>mx){
            mx=i+r[i];
            id=i;
        }
    }
    for(int i=n;i>=1;i--)r[i]=r[i-1];
    for(int i=1;i<=n;i++){
        vec[i-r[i]+1].push_back(i);
    }
    for(int i=1;i<=n;i++){
        for(int j=0;j<vec[i].size();j++){
            add(vec[i][j]);
        }
        ans+=ask(i+r[i]-1)-ask(i);
    }
    printf("%lld\n",ans);
    return 0;
}
int main(){
    int T;scanf("%d",&T);
    while(T--)w33ha();
    return 0;
}

你可能感兴趣的:(-----------数据结构,树状数组)