C#LeetCode刷题之#447-回旋镖的数量(Number of Boomerangs)

问题

该文章的最新版本已迁移至个人博客【比特飞】,单击链接 https://www.byteflying.com/archives/3792 访问。

给定平面上 n 对不同的点,“回旋镖” 是由点表示的元组 (i, j, k) ,其中 i 和 j 之间的距离和 i 和 k 之间的距离相等(需要考虑元组的顺序)。

找到所有回旋镖的数量。你可以假设 n 最大为 500,所有点的坐标在闭区间 [-10000, 10000] 中。

输入:[[0,0],[1,0],[2,0]]

输出:2

解释:两个回旋镖为 [[1,0],[0,0],[2,0]] 和 [[1,0],[2,0],[0,0]]


Given n points in the plane that are all pairwise distinct, a "boomerang" is a tuple of points (i, j, k) such that the distance between i and j equals the distance between i and k (the order of the tuple matters).

Find the number of boomerangs. You may assume that n will be at most 500 and coordinates of points are all in the range [-10000, 10000] (inclusive).

Input:[[0,0],[1,0],[2,0]]

Output:2

Explanation:The two boomerangs are [[1,0],[0,0],[2,0]] and [[1,0],[2,0],[0,0]]


示例

该文章的最新版本已迁移至个人博客【比特飞】,单击链接 https://www.byteflying.com/archives/3792 访问。

public class Program {

    public static void Main(string[] args) {
        var points = new int[,] { { 0, 0 }, { 1, 0 }, { 2, 0 } };

        var res = NumberOfBoomerangs(points);
        Console.WriteLine(res);

        Console.ReadKey();
    }

    public static int NumberOfBoomerangs(int[,] points) {
        var res = 0;
        for(var i = 0; i < points.GetLength(0); ++i) {
            var dic = new Dictionary();
            for(var j = 0; j < points.GetLength(0); ++j) {
                var a = points[i, 0] - points[j, 0];
                var b = points[i, 1] - points[j, 1];
                var c = a * a + b * b;
                if(dic.ContainsKey(c)) {
                    dic[c]++;
                } else {
                    dic[c] = 1;
                }
            }
            foreach(var item in dic) {
                res += item.Value * (item.Value - 1);
            }
        }
        return res;
    }

}

以上给出1种算法实现,以下是这个案例的输出结果:

该文章的最新版本已迁移至个人博客【比特飞】,单击链接 https://www.byteflying.com/archives/3792 访问。

2

分析:

解该题需要高中数学排列组合中的相关知识。

显而易见,以上算法的时间复杂度为: O(n^{2})

你可能感兴趣的:(C#LeetCode刷题,C#LeetCode)