- flutter pigeon gomobile 插件中使用go工具类
yujunlong3919
fluttergolangswiftkotlin
文章目录为什么flutter要用go写工具类1.下载pigeon插件模版2.编写go代码3.生成greeting.aar,Greeting.xcframework4.ios5.android6.dart中使用为什么flutter要用go写工具类在Flutter应用中,有些场景涉及到大量的计算,比如复杂的加密算法、数据压缩/解压缩或者图形处理中的数学计算等1.下载pigeon插件模版base_plu
- 刷题计划day28 动规(二)【不同路径】【不同路径 II】【整数拆分】【不同的二叉搜索树】
哈哈哈的懒羊羊
数据结构算法javaleetcode蓝桥杯面试动态规划
⚡刷题计划day28动规(二)继续,下一期是背包专题,可以点个免费的赞哦~往期可看专栏,关注不迷路,您的支持是我的最大动力~目录题目一:62.不同路径法一:动态规划法二:动态规划空间优化题目二:63.不同路径II题目三:343.整数拆分法一:动态规划法二:数学法(复杂度最低)题目四:96.不同的二叉搜索树题目一:62.不同路径62.不同路径(https://leetcode.cn/problems
- 使用Yuan 2.0与LangChain构建智能聊天应用:完整指南
scaFHIO
langchainpython
技术背景介绍Yuan2.0是IEIT系统开发的新一代基础大语言模型,包括Yuan2.0-102B、Yuan2.0-51B和Yuan2.0-2B三种版本。相比之前的Yuan1.0,Yuan2.0使用了更广泛的高质量预训练数据,并通过指令微调数据集增强了模型的语义理解、数学推理、编程知识等能力。为了方便开发者集成,Yuan2.0提供了兼容OpenAIAPI的服务接口。本文将介绍如何通过LangChai
- 从C语言的角度重构数据结构系列(十三)-位运算
文宇肃然
数据结构常见算法原理讲解C语言数据结构
位运算简介位运算位运算就是基于整数的二进制表示进行的运算。由于计算机内部就是以二进制来存储数据,位运算是相当快的。基本的位运算共6种,分别为按位与、按位或、按位异或、按位取反、左移和右移。运算运算符数学符号表示解释与&&、and只有两个对应位都为1时才为1或||、or只要两个对应位中有一个1时就为1异或^、xor只有两个对应位不同时才为1左移假设要将一个无符号整数乘以2。可以简单地将所有位向左边移
- 流形拓扑学:Chern数与Euler示性数
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
流形拓扑学:Chern数与Euler示性数1.背景介绍流形拓扑学是数学中一个重要的分支,研究流形的拓扑性质。流形是局部类似于欧几里得空间的空间,广泛应用于物理学、计算机科学和工程学等领域。Chern数和Euler示性数是流形拓扑学中的两个重要不变量,它们在描述流形的几何和拓扑性质方面起着关键作用。Chern数是由中国数学家陈省身提出的,主要用于描述复流形的特征类。Euler示性数则是一个更为古老的
- 《机器学习数学基础》补充资料:四元数、点积和叉积
CS创新实验室
机器学习数学基础机器学习人工智能机器学习数学基础
《机器学习数学基础》第1章1.4节介绍了内积、点积的有关概念,特别辨析了内积空间、欧几里得空间;第4章4.1.1节介绍了叉积的有关概念;4.1.2节介绍了张量积(也称外积)的概念。以上这些内容,在不同资料中,所用术语的含义会有所差别,读者阅读的时候,不妨注意,一般资料中,都是在欧几里得空间探讨有关问题,并且是在三维的欧氏空间中,其实质所指即相同。但是,如果不是在欧氏空间中,各概念、术语则不能混用。
- 洛谷P10424 [蓝桥杯 2024 省 B] 好数
一缕叶
刷题蓝桥杯算法职场和发展
#includeusingnamespacestd;constintN=10000010;inta[8]={0};intt[8]={0};boolisnumber(intn){inti=0;if(n%2==0)returnfalse;intlength=0;while(n){a[i++]=n%10;n/=10;length++;}t[1]=a[1]+a[0],t[2]=a[2]+a[1],t[3]
- 四元数:连接四维时空与三维旋转的数学桥梁
aichitang2024
算法数学知识点讲解四元数线性代数
四元数:连接四维时空与三维旋转的数学桥梁引言1843年,威廉·哈密顿在都柏林布鲁姆桥的顿悟,不仅诞生了四元数理论,更开创了高维数在三维空间应用的新纪元。本文将揭示四元数如何架起四维数学空间与三维物理世界的桥梁。一、四元数基础架构1.代数定义四元数是形如的超复数:q=w+xi+yj+zk其中:w为实部(Scalar)(x,y,z)为虚部(Vector)i²=j²=k²=ijk=-12.基本运算规则运
- 闵氏几何详解
aichitang2024
算法数学知识点讲解几何学闵可夫斯基几何
闵氏几何详解闵氏几何(Minkowskigeometry)最初由数学家赫尔曼·闵可夫斯基(HermannMinkowski)提出,是现代几何学和理论物理的重要分支。它既与爱因斯坦的狭义相对论密切相关,也在更普遍的度量空间研究中占有显赫地位。本文将对闵氏几何的基础概念、结构、在物理中的用途以及与其他几何的对比等方面进行详细介绍。一、历史背景与概念渊源提出背景19世纪末到20世纪初,数学家们在研究欧几
- 《机器学习数学基础》补充资料:求解线性方程组的克拉默法则
CS创新实验室
机器学习数学基础机器学习人工智能机器学习数学基础
《机器学习数学基础》中并没有将解线性方程组作为重点,只是在第2章2.4.2节做了比较完整的概述。这是因为,如果用程序求解线性方程组,相对于高等数学教材中强调的手工求解,要简单得多了。本文是关于线性方程组的拓展,供对此有兴趣的读者阅读。1.线性方程组的解位于一条直线不失一般性,这里讨论三维空间的情况,对于多维空间,可以由此外推,毕竟三维空间便于想象和作图说明。设矩阵A=[124135]\pmb{A}
- 对比度调整操作
weixin_51302377
深度学习人工智能计算机视觉算法
对比度调整是一种常见的图像处理操作,用于增强或减弱图像中不同颜色或亮度之间的差异,使图像的细节更加清晰或柔和。以下是关于对比度调整操作的详细介绍:原理对比度是指图像中最亮和最暗区域之间的差异程度。对比度调整通过改变图像中像素值的分布来实现。一般来说,增加对比度会使亮的部分更亮,暗的部分更暗,从而增强图像的层次感和细节;降低对比度则会使图像的亮度分布更加均匀,减少图像的层次感。在数学上,对比度调整通
- CCF-CSP真题202206-归一化处理/寻宝大冒险
chaser&upper
一研为定Algorithm算法c++
CCF-CSP真题202206归一化处理寻宝大冒险Rederence归一化处理数学题:直接计算平均值、方差、按公式计算即可!7-42930-22126541000-0.74855103790736130.04504284674812264-0.7378629047806881-0.7966476369773906-0.70579850540066861.00964686143037751.9341
- Hu矩的原理及应用
Ring__Rain
算法人工智能机器学习
什么是Hu矩Hu矩是一种描述图像形状特征的数学工具,核心思想:提取图像的形状信息,并对这些信息进行归一化,使得它们对图像的平移、旋转和缩放具有不变性。简单说,Hu矩就是一串数字,这串数字可以唯一的描述图像的形状特征,而且不管图像怎么移动、旋转和缩放,这组数字都不变。Hu矩的原理1,几何矩:图像的像素值的加权和,可以用来描述图像的形状。如:零阶矩(面积):图像中所有像素值的总和;一阶矩(质心):图像
- [总结] 音视频开发工程师之路
二进制怪兽
音视频音视频
前言音视频开发是一个涉及多个技术领域的复杂方向,涵盖了音频处理、视频渲染、编解码技术、流媒体传输等多个方面。以下是一个简要的学习路线指南,帮助你逐步掌握音视频开发的核心技能。基础知识计算机科学基础:掌握操作系统、计算机网络、数据结构和算法等基础知识。数学基础:了解傅里叶变换、线性代数、信号处理等数学知识,这些是音视频编-解码和处理的基石。编程语言:熟练掌握C/C++,这是音视频开发中最常用的语言;
- ColD Fusion,分布式多任务微调的协同 “密码”
人工智能
ColDFusion,分布式多任务微调的协同“密码”发布时间:2025-02-19近日热文:1.全网最全的神经网络数学原理(代码和公式)直观解释2.大模型进化史:从Transformer到DeepSeek-R1的AI变革之路3.2W8000字深度剖析25种RAG变体:全网最全~没有之一知乎【柏企】公众号【柏企科技说】【柏企阅文】在预训练模型的基础上进行改进,有望提升所有基于它微调的模型性能。然而,
- 【AI中数学-信号处理】信号的清道夫:精通信号过滤技巧
云博士的AI课堂
AI中的数学人工智能信号处理高频去噪带通滤波滤波处理信号过滤机器学习
第3节信号的清道夫:精通信号过滤技巧在信号处理中,过滤技术是一项至关重要的工具。通过对信号的处理与过滤,我们能够去除不必要的成分,如噪声、干扰等,从而提高信号质量,增强其后续处理效果。在本节中,我们将介绍三种实际应用中常用的精通信号过滤技巧,包括基于小波变换的信号分离、带通滤波在心电图分析中的应用,以及图像中的高频噪声去除技术。通过这些案例,我们将深入探讨信号过滤在不同领域中的应用。案例1:基于小
- Java程序员面临抉择:激烈竞争下,转行大模型或是新出路,非常详细收藏我这一篇就够了!
大模型教程
大模型学习学习大模型语言模型人工智能程序员转行
Java程序员转行大模型领域,可以依据以下详细路线进行学习和职业转换:第1阶段:基础知识巩固数学基础:线性代数:矩阵运算、向量空间等。概率论与统计:概率分布、统计推断等。微积分:导数、积分、多变量函数等。Python编程:Python基础:数据类型、控制结构、函数等。Python进阶:面向对象编程、装饰器、生成器等。数据处理:NumPy、Pandas、Matplotlib。第2阶段:机器学习与深度
- 每日一题010-堆-洛谷p2085最小函数值
YQ_ZJH
每日一题算法java开发语言数据结构蓝桥杯c++
P2085最小函数值题目描述有nnn个函数,分别为F1,F2,…,FnF_1,F_2,\dots,F_nF1,F2,…,Fn。定义Fi(x)=Aix2+Bix+Ci(x∈N∗)F_i(x)=A_ix^2+B_ix+C_i(x\in\mathbbN*)Fi(x)=Aix2+Bix+Ci(x∈N∗)。给定这些AiA_iAi、BiB_iBi和CiC_iCi,请求出所有函数的所有函数值中最小的mmm个(如
- AI大模型对决:DeepSeek与Grok 3,谁才是真王者?
广拓科技
人工智能
(一)性能对比在性能方面,Grok3和DeepSeek各有千秋。在数学任务的AIME'24数学能力测试中,Grok3取得了52分,而DeepSeek-V3仅获得39分,Grok3展现出更强的数学推理能力;在GPQA科学知识评估中,Grok3以75分领先于DeepSeek-V3的65分,在科学专业知识的理解和应用上更胜一筹。在编程任务中,Grok3的表现也较为出色,能够生成逻辑清晰、效率较高的代码,
- Python-集合基础的详细讲解
何等样仁
python数据结构
1.集合(set)的概述:Python中的集合与数学中集合(set)差不多一致,也是用于保存不重复的元素。它有可变集合(set)和不可变集合(frozenset)两种,在python中用到集合,多半是使用到了他的唯一性,或者是集合可加减性,不用怀疑。同样在自己写代码时如果要用到上面的也可以考虑来提高效率.2.集合操作:2.1集合的创建:Python中提供了两种集合创建方式,第一种是字面量形式的创建
- AI架构师必知必会系列:强化学习在金融领域的应用
AI天才研究院
AI实战AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
文章目录AI架构师必知必会系列:强化学习在金融领域的应用1.背景介绍1.1问题的由来1.2研究现状1.3研究意义1.4本文结构2.核心概念与联系1.强化学习交易系统的总体架构2.强化学习模型训练流程3.强化学习风控系统架构3.核心算法原理&具体操作步骤3.1算法原理概述3.1.1Q学习3.1.2REINFORCE3.1.3A3C3.2算法步骤详解3.3算法优缺点3.4算法应用领域4.数学模型和公式
- 青少年编程与数学 02-009 Django 5 Web 编程 19课题、RESTful API开发
明月看潮生
编程与数学第02阶段青少年编程django编程与数学pythonrestful
青少年编程与数学02-009Django5Web编程19课题、RESTfulAPI开发一、RESTfulAPI核心概念特点设计原则应用场景优势挑战二、DRF核心特性使用场景优势示例代码安装DRF配置项目定义模型创建序列化器创建视图配置URLs三、创建API步骤1:创建Django项目和应用步骤2:安装DjangoRESTFramework步骤3:配置项目步骤4:定义模型步骤5:创建序列化器步骤6:
- 青少年编程与数学 02-009 Django 5 Web 编程 23课题、安全性
明月看潮生
编程与数学第02阶段青少年编程django编程与数学python网络安全
青少年编程与数学02-009Django5Web编程23课题、安全性一、安全性安全性的定义安全性的关键方面安全性的实现方法安全性的挑战安全性的最佳实践二、安全漏洞1.注入漏洞2.跨站脚本(XSS)漏洞3.跨站请求伪造(CSRF)漏洞4.不安全的认证和会话管理5.安全配置错误6.不安全的反序列化7.使用含有已知漏洞的组件8.文件上传漏洞9.缓存区溢出10.信息泄露防范措施三、Django项目的安全性
- 用deepseek学大模型08-长短时记忆网络 (LSTM)
wyg_031113
lstm人工智能rnn
deepseek.com从入门到精通长短时记忆网络(LSTM),着重介绍的目标函数,损失函数,梯度下降标量和矩阵形式的数学推导,pytorch真实能跑的代码案例以及模型,数据,模型应用场景和优缺点,及如何改进解决及改进方法数据推导。从入门到精通长短时记忆网络(LSTM)参考:长短时记忆网络(LSTM)在序列数据处理中的优缺点分析1.LSTM核心机制LSTM通过门控机制(遗忘门、输入门、输出门)和细
- 《人工智能所需的数学基础》:开启AI领域的数学之旅
杨焕月Great
《人工智能所需的数学基础》:开启AI领域的数学之旅【下载地址】人工智能所需的数学基础人工智能所需的数学基础欢迎来到《人工智能所需的数学基础》资源页面项目地址:https://gitcode.com/open-source-toolkit/2af1b项目介绍在人工智能(AI)的广阔天地中,数学是不可或缺的基石。《人工智能所需的数学基础》资源包正是为了帮助那些渴望深入AI领域的学习者,提供一套系统、全
- 用deepseek学大模型08-卷积神经网络(CNN)
wyg_031113
机器学习人工智能
yuanbao.tencent.com从入门到精通卷积神经网络(CNN),着重介绍的目标函数,损失函数,梯度下降标量和矩阵形式的数学推导,pytorch真实能跑的代码案例以及模型,数据,预测结果的可视化展示,模型应用场景和优缺点,及如何改进解决及改进方法数据推导。一、目标函数与损失函数数学推导1.均方误差(MSE)标量形式:E(w)=12∑i=1N(yi−y^i)2E(\mathbf{w})=\f
- VTK知识学习(32)-图像运算
无所谓จุ๊บ
VTK学习VTK
1、数学运算vklmageMathematics提供了基本的一元和二元数学操作。根据不同的操作,需要一个或者两个输入图像。二元数学操作要求两个输入图像具有相同的像素数据类型和颜色组分。当两个图像大小不同时,输出图像的范围为两个输入图像范围的并集,并且原点和像素间隔与第一个输入图像保持一致。privatevoidTestMathematics(){//绘制一个暗红色矩形vtkImageCanvasS
- 【人工智能】AI现状分析 || 神经网络的数学基础 || 人工智能交叉领域的发展和技术应用 || 附:小白入门人工智能 学习步骤
追光者♂
Python从入门到人工智能百题千解计划(项目实战案例)人工智能交叉领域神经网络的数学基础AI现状分析
声明:仅学习使用~资料整理分析不易,点个赞吧!目录1.AI现状分析(人工智能基础入门概念)1.1人工智能基础概念1.2人工智能的技术发展路线1.3产业发展的驱动因素1.4人工智能薪资岗位介绍2.神经网络的数学基础2.1神经网络的生物表示2.2神经网络的数学表示2.3神经网络必备的一些数学基础2.3.1Sigmoid函数2.3.2偏置2.4总结3.人工智能交叉领域的发展和技术应用3.1人工智能应用交
- 一文读懂!深度学习 + PyTorch 的超实用学习路线
a小胡哦
深度学习pythonpytorch
深度学习作为人工智能领域的核心技术,正深刻改变着诸多行业。PyTorch则是深度学习实践中备受青睐的框架,它简单易用且功能强大。下面就为大家详细规划深度学习结合PyTorch的学习路线。一、基础知识储备数学基础数学是很重要的!!!线性代数、概率论与数理统计、微积分是深度学习的数学基石。熟悉矩阵运算、概率分布、梯度计算等概念,能帮助理解深度学习模型的原理。例如,在神经网络中,矩阵乘法用于神经元之间的
- 蓝桥杯备考:贪心算法之纪念品分组
无敌大饺子 1
贪心算法算法
P1094[NOIP2007普及组]纪念品分组-洛谷这道题我们的贪心策略就是每次找出最大的和最小的,如果他们加起来不超过我们给的值,就分成一组,如果超过了,就把大的单独成一组,小的待定#include#includetypedeflonglongLL;usingnamespacestd;LLw,n;constintN=3e4+10;LLa[N];intmain(){cin>>w>>n;for(in
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理