PyTorch权重初始化的几种方法

PyTorch在自定义变量及其初始化方法:

self.fuse_weight_1 = torch.nn.Parameter(torch.FloatTensor(1), requires_grad=True)
self.fuse_weight_1.data.fill_(0.25)

如上是定义一个可学习的标量。也可以定义一个可学习的矩阵:

self.fuse_weight_1 = torch.nn.Parameter(torch.FloatTensor(torch.rand(3,3)), requires_grad=True)

PyTorch自定义卷积层初始化方法:

1.

class Net(nn.Module):

    def __init__(self):
        super(Net, self).__init__()

        self.conv = nn.Sequential(
            nn.Conv2d(self.input_dim, 64, 4, 2, 1),
            nn.ReLU(),
        )

        self.fc = nn.Sequential(
            nn.Linear(32, 64 * (self.input_height // 2) * (self.input_width // 2)),
            nn.BatchNorm1d(64 * (self.input_height // 2) * (self.input_width // 2)),
            nn.ReLU(),
        )

        self.deconv = nn.Sequential(
            nn.ConvTranspose2d(64, self.output_dim, 4, 2, 1),
            nn.Sigmoid(), 
        )

    utils.initialize_weights(self)

    def forward(self, input):
    ...

def initialize_weights(net):
    for m in net.modules():
        if isinstance(m, nn.Conv2d):
            m.weight.data.normal_(0, 0.02)
            m.bias.data.zero_()
        elif isinstance(m, nn.ConvTranspose2d):
            m.weight.data.normal_(0, 0.02)
            m.bias.data.zero_()
        elif isinstance(m, nn.Linear):
            m.weight.data.normal_(0, 0.02)
            m.bias.data.zero_()

2. 

def init_weights(m):
     print(m)
     if type(m) == nn.Linear:
         m.weight.data.fill_(1.0)
         print(m.weight)

 net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
 net.apply(init_weights)

 3.

def weights_init(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
        m.weight.data.normal_(0, math.sqrt(2. / n))
        if m.bias is not None:
            m.bias.data.zero_()
    elif classname.find('BatchNorm') != -1:
        m.weight.data.fill_(1)
        m.bias.data.zero_()
    elif classname.find('Linear') != -1:
        m.weight.data.normal_(0, 0.01)
        m.bias.data = torch.ones(m.bias.data.size())

net.apply(init_weights)

4.

self.fuse_weight_1 = nn.Conv2d(1, 1, kernel_size=1, stride=1, bias=False)
self.fuse_weight_1.weight.data.fill_(0.2)

 

 

参考:

1. torch.nn.init

2. Pytorch 细节记录

3. PyTorch参数初始化和Finetune

你可能感兴趣的:(PyTorch)