斐波那契数列传说起源于一对非常会生的兔子。定义:
这个数列有很多奇妙的性质(比如 F(n+1)/F(n) 的极限是黄金分割率),用计算机有效地求解这个问题的解是一个比较有意思的问题,本文一共提供了4种解法。
解法一:递归
这是最最最直观的想法,是每个人都能编写的简单程序,优点是非常明显的:简单易懂,清晰明了。但是缺点就是效率非常低,时间复杂度是指数级的。举个例子,比如要计算F(5),那么就要就算F(4)+F(3),而在计算F(4)的时候又要计算F(3),导致了 F(3)的重复计算,如果n越来越大,重复的计算量是无比巨大的,这就是瓶颈所在。
代码:
int F(int n)
{
if(n <= 0)
return 0;
else if(n == 1)
return 1;
else
return F(n-1) + F(n-2);
}
那么怎么克服这个问题?这就引出了解法二。
解法二:动态规划
解法一的缺点是因为重复计算,那么我们只需要把一些已经计算过的答案存放起来,那这个缺点就解决了。我们用一维数组来实现,比如 F(5)就存放在数组下标为5的数据单元里。
代码:
int F(int n)
{
if(n <= 0)
if(n == 1)
return 1;
return 0;
int* ans = new int[n+1];
ans[0] = 0;
ans[1] = 1;
for(int i=2; i<=n; i++)
ans[i] = ans[i-1] + ans[i-2];
int tmp = ans[n];
delete[] ans;
return tmp;
}
这个算法的时间复杂度是 O(n),空间复杂度也是O(n)。复杂度来到了线性,这是我们所高兴的,但是,是否还有比线性更好的复杂度?
解法三:求解通项公式
如果我们知道了通项公式,那么我们就能在 O(1)的时间内得到F(n)。这是一个完美的时间复杂度。
这里只介绍一种求解通项公式的技巧——矩阵。矩阵作为一个强大的数学工具有太多不为人知的应用。当然还有其它方法,比如高中数学竞赛里面的特征方程,有兴趣的读者可以自行搜索一下。
我们很容易发现:
所以剩下的问题就是只要求出了就求出了F(n)。
求这个矩阵的 n次方的解法也有很多,这里介绍一种方法——相似对角化。
令
于是
上述方程的解为
于是解得
的基础解系为
的基础解系为
所以令
我们有:
所以,
两边取n次方,我们得到:
最后,做矩阵运算(实际上我们只需要 An 里左下角的数据),便可以得到:
通项公式的计算就完成了。(推导过程需线性代数基础)
时间复杂度是完美了,那么有没有缺点呢?当然有,公式里引入了无理数,所以不能保证运算结果的精度。
解法四:分治
解法三的缺点是精度无法保证,那么我们自然就想到,然计算机自己去计算,进行n-1次矩阵乘法不就行了。这是最直观的想法,虽然是线性的,但复杂度还是不令人满意,有没有更好的复杂度?比如 log2 (n)?答案是有的。
先来看一个背景知识:一个十进制正数 n的用二进制表示要用floor( log2(n) )+1 位。(floor(x)返回不大于 x的最大整数)
用二进制方式表示 n:
所以
如果能得到的值就可以经过 log2 (n)次乘法得到。
显然可以通过递推得到:
代码:
Class Matrix; //假设已经实现了矩阵类
Matrix MatrixPow(const Matrix &m, int n) //计算m的n次方
{
Matrix result = Matrix::identity; //单位矩阵
Matrix tmp = m;
for(; n; n >>= 1)
{
if(n & 1)
result *= tmp;
tmp *= tmp;
}
}
int F(int n)
{
Matrix an = MatrixPow(A, n);
return F1*an(1,0) + F0*an(1,1); //an(1,0)表示an的第1行第0列的元素
}
时间复杂度仅为O(log2 (n))。