BZOJ.3257.树的难题(树形DP)

题目链接

状态只与黑、白两点的颜色有关,于是用 \(f[x][i][j]\)表示当前以x为根节点,有\(i\)个黑点\(j\)个白点,使得x子树满足该条件的最小花费。
最后答案就是 \(min\{f[root][0][j],f[root][i][0/1]\}\)

\(i\geq 1\)的状态都看做 \(i=1\)\(j\geq 2\)的状态都看做 \(j=2\).
更新顺序同树上背包一样,用从之前子树得到的信息与当前枚举的子树合并。因为要合并后的信息所以再开一个数组记录更方便些。
转移时要考虑当前节点的颜色(初始化即可)。
每个子节点有两种选择: 割掉,连着。但割掉必须要保证子节点状态合法,即!i||j<2。这时转移到的状态是当前枚举的x的状态.

复杂度O(n).(一点常数)

//44372kb   3756ms
#include 
#include 
#include 
#include 
//#define gc() getchar()
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
#define INF 1e14
#define MAXIN 1000000
typedef long long LL;
const int N=3e5+5;

int n,Enum,A[N],H[N],nxt[N<<1],to[N<<1],val[N<<1];
LL f[N][2][3],tmp[2][3];
char IN[MAXIN],*SS=IN,*TT=IN;

inline int read()
{
    int now=0;register char c=gc();
    for(;!isdigit(c);c=gc());
    for(;isdigit(c);now=now*10+c-'0',c=gc());
    return now;
}
inline void AddEdge(int u,int v,int w)
{
    to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum, val[Enum]=w;
    to[++Enum]=u, nxt[Enum]=H[v], H[v]=Enum, val[Enum]=w;
}
void DFS(int x,int fa)
{
//  f[x][0][0]=f[x][0][1]=f[x][0][2]=f[x][1][0]=f[x][1][1]=f[x][1][2]=INF;
    for(int i=0; i<2; ++i)//woc展开慢了。。 
        for(int j=0; j<3; ++j) f[x][i][j]=INF;
    f[x][A[x]==0][A[x]==1]=0;//感觉这个初始化有点keyi...
    for(int v,i=H[x]; i; i=nxt[i])
        if((v=to[i])!=fa)
        {
            DFS(v,x);
            for(int a=0; a<2; ++a)
                for(int b=0; b<3; ++b) tmp[a][b]=INF;
            for(int a=0; a<2; ++a)
                for(int b=0; b<3; ++b)
                    if(f[x][a][b]!=INF)//
                        for(int c=0; c<2; ++c)//枚举子树的情况,不要c<=a!
                            for(int p1,p2,d=0; d<3; ++d)
                                if(f[v][c][d]!=INF)//
                                {
                                    p1=a+c>=1?1:0, p2=b+d>=2?2:b+d;
                                    tmp[p1][p2]=std::min(tmp[p1][p2],f[x][a][b]+f[v][c][d]);//
                                    if(!c||d<2) tmp[a][b]=std::min(tmp[a][b],f[x][a][b]+f[v][c][d]+val[i]);//
                                }
            memcpy(f[x],tmp,sizeof tmp);
        }
}
inline LL Min(LL a,LL b,LL c,LL d,LL e){
    return std::min(a,std::min(b,std::min(c,std::min(d,e))));
}

int main()
{
    int T=read();
    while(T--)
    {
        Enum=0, memset(H,0,sizeof H);
        n=read();
        for(int i=1; i<=n; ++i) A[i]=read();
        for(int u,v,i=1; i

转载于:https://www.cnblogs.com/SovietPower/p/8682950.html

你可能感兴趣的:(BZOJ.3257.树的难题(树形DP))