TensorFlow学习笔记(二):手写数字识别之多层感知机

在【TensorFlow学习笔记(一):手写数字识别之softmax回归】中:

我使用softmax回归算法识别mnist数据集的手写数字,在我机器上的mnist测试集上最好结果是 92.9%

在本节中,我们基于【TensorFlow学习笔记(一):手写数字识别之softmax回归】的代码,只修改几行代码,把softmax回归改为含一个隐层的多层感知机。

然后看看在mnist测试集上的准确率会是多少?


增加一个含 500 个神经元的隐层。

在【TensorFlow学习笔记(一):手写数字识别之softmax回归】的基础上修改:


修改前的代码:

#定义变量 w 和 b
w = tf.Variable ( tf.zeros ( [ 784, 10 ] ) )
b = tf.Variable ( tf.zeros ( [ 10 ] ) ) 


#实现 softmax 模型
y = tf.nn.softmax ( tf.matmul ( x, w ) + b )

修改后的代码

#定义变量 w1 、 b1、w2、b2
w1 = tf.Variable ( tf.truncated_normal ( [ 784,  500 ] ,   stddev = 0.1 ) )
b1 = tf.Variable ( tf.zeros ( [ 500 ] ) )
w2 = tf.Variable ( tf.truncated_normal ( [ 500,  10 ],   stddev = 0.1 ) )
b2 = tf.Variable ( tf.zeros ( [ 10 ] ) )


#含一个隐层的多层感知机
h1 = tf.nn.relu ( tf.matmul ( x,  w1 )  +  b1 )
y = tf.nn.softmax ( tf.matmul (h1,  w2 )  +  b2 )



然后运行整个网络,在我的电脑上,准确率是 98.14% ,结果如下:


==================== RESTART: D:\Python_code\ML\mnist.py ====================
Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
accuracy: 0.9814

>>> 


完整代码如下


import  numpy  as np
import  tensorflow  as  tf
from  tensorflow.examples.tutorials.mnist  import  input_data
mnist  =  input_data.read_data_sets ( "MNIST_data/",  one_hot = True )

x = tf.placeholder ( tf.float32, [ None, 784 ] )
y_ = tf.placeholder ( tf.float32, [ None, 10 ] )

w1 = tf.Variable ( tf.truncated_normal ( [ 784,  500 ] ,  stddev = 0.1 ) )
b1 = tf.Variable ( tf.zeros ( [ 500 ] ) )
w2 = tf.Variable ( tf.truncated_normal ( [ 500,  10 ] , stddev = 0.1 ) )
b2 = tf.Variable ( tf.zeros ( [ 10 ] ) )

h1 = tf.nn.relu ( tf.matmul ( x,  w1 )  + b1 )
y = tf.nn.softmax ( tf.matmul ( h1,  w2 )  +  b2 )

cross_entropy = tf.reduce_mean ( -tf.reduce_sum ( y_ * tf.log ( y ), 1 ) )
train_step = tf.train.GradientDescentOptimizer ( 0.03 ) .minimize ( cross_entropy )

correct_prediction = tf.equal ( tf.argmax ( y, 1 ) ,tf.argmax ( y_, 1 ) )
accuracy = tf.reduce_mean ( tf.cast ( correct_prediction, "float" ) )


init = tf.global_variables_initializer ( )
with  tf.Session()  as  sess:
  sess.run ( init )
  for  i  in  range ( 200000 ) :
    batch_xs, batch_ys = mnist.train.next_batch ( 100 )
    result = sess.run ( [ accuracy, train_step ], feed_dict = { x:batch_xs, y_:batch_ys } )
    
    if ( i % 100 == 0 ):
      print ( "accuracy:", sess.run ( accuracy, feed_dict = { x:mnist.test.images, y_:mnist.test.labels } ),"    step:", i )



 


 

你可能感兴趣的:(Tensorflow)