第23章 最小生成树
22.2 Kruskal算法和Prim算法
22.2.1 Kruskal算法
#include
#include
#include
#include
typedef struct graph_type *graph;
struct edge {
int u;
int v;
int w;
};
struct graph_node {
int key;
int w;
struct graph_node *next;
};
void graph_node_ini(struct graph_node *x, int key, int w)
{
x->key = key;
x->w = w;
x->next = NULL;
}
struct vertex {
char str_vertex[256]; //顶点的字符串表示,显示用
};
void vertex_ini(struct vertex *v)
{
strcpy(v->str_vertex, "");
}
struct graph_type {
struct graph_node **adj;
struct vertex *vertex_array;
int v_num;
int e_num;
};
//顶点是编号为0~v_num-1的数,str_vertex是顶点的字符串表示,显示用
graph graph_create(int v_num, char *str_vertex[])
{
graph g = malloc(sizeof(struct graph_type));
g->v_num = v_num;
g->e_num = 0;
g->adj = malloc(sizeof(struct graph_node *) * v_num);
g->vertex_array = malloc(sizeof(struct vertex) * v_num);
for (int i = 0; i < v_num; i++) {
g->adj[i] = NULL;
strcpy(g->vertex_array[i].str_vertex, str_vertex[i]);
}
return g;
}
void graph_destroy(graph g)
{
for (int i = 0; i < g->v_num; i++) {
for (struct graph_node * x = g->adj[i]; x != NULL;) {
struct graph_node *del=x;
x=x->next;
free(del);
}
}
free(g->adj);
free(g->vertex_array);
free(g);
}
void graph_insert_edge(graph g, struct edge e)
{
struct graph_node *u = malloc(sizeof(struct graph_node));
graph_node_ini(u, e.u, e.w);
struct graph_node *v = malloc(sizeof(struct graph_node));
graph_node_ini(v, e.v, e.w);
//从表头插入,将v插入到表头u
v->next = g->adj[e.u];
g->adj[e.u] = v;
//从表头插入,将u插入到表头v
u->next = g->adj[e.v];
g->adj[e.v] = u;
++g->e_num;
}
void graph_display(graph g)
{
printf("%d vertices,%d edges\n", g->v_num, g->e_num);
for (int i = 0; i < g->v_num; i++) {
printf("%s: ", g->vertex_array[i].str_vertex);
for (struct graph_node * x = g->adj[i]; x != NULL; x = x->next) {
printf("%s,%d ", g->vertex_array[x->key].str_vertex,x->w);
}
printf("\n");
}
}
void swap(void *a, void *b, size_t elem_size)
{
if (a == NULL || b == NULL || a == b)
return;
char temp[elem_size]; /*变长数组 */
memcpy(temp, a, elem_size);
memcpy(a, b, elem_size);
memcpy(b, temp, elem_size);
}
int partition(void *base, size_t elem_size, int p, int r,
int (*comp) (const void *, const void *))
{
char *cbase = base;
void *key = &cbase[r * elem_size];
int i = p - 1;
for (int j = p; j < r; j++) {
if (comp(&cbase[j * elem_size], key) <= 0) {
++i;
swap(&cbase[i * elem_size], &cbase[j * elem_size],
elem_size);
}
}
swap(&cbase[(i + 1) * elem_size], key, elem_size);
return i + 1;
}
void quick_sort(void *base, size_t elem_size, int p, int r,
int (*comp) (const void *, const void *))
{
if (p < r) {
int q = partition(base, elem_size, p, r, comp);
quick_sort(base, elem_size, p, q - 1, comp);
quick_sort(base, elem_size, q + 1, r, comp);
}
}
typedef struct set_type *set;
struct set_node {
void *key;
int rank;
struct set_node *parent;
};
void set_node_ini(struct set_node *x, void *key)
{
x->key = key;
x->rank = 0;
x->parent = NULL;
}
struct set_type {
struct set_node *root;
};
set set_create(void *key)
{
set s = malloc(sizeof(struct set_type));
s->root = malloc(sizeof(struct set_node));
set_node_ini(s->root, key);
s->root->parent = s->root;
s->root->rank = 0;
return s;
}
void link(struct set_node *x, struct set_node *y)
{
if (x->rank > y->rank) {
y->parent = x;
} else {
x->parent = y;
if (x->rank == y->rank) {
++y->rank;
}
}
}
struct set_node *find_set_path_compression(struct set_node *x)
{
if (x != x->parent) {
x->parent = find_set_path_compression(x->parent);
}
return x->parent;
}
struct set_node *find_set(set s)
{
return find_set_path_compression(s->root);
}
void set_destroy(set s, void (*free_key) (void *))
{
free_key(s->root->key);
free(s->root);
free(s);
}
void set_union(set sa, set sb)
{
link(find_set(sa), find_set(sb));
}
void graph_get_edges(graph g, struct edge edges[], int *edge_num)
{
*edge_num = 0;
for (int i = 0; i < g->v_num; i++) {
int u = i;
for (struct graph_node * x = g->adj[i]; x != NULL; x = x->next) {
int v = x->key;
if (u <= v) {
struct edge edge = { u, v, x->w };
edges[(*edge_num)++] = edge;
}
}
}
}
int cmp_edge(const void *p1, const void *p2)
{
const struct edge *pa = p1;
const struct edge *pb = p2;
if (pa->w < pb->w)
return -1;
if (pa->w == pb->w)
return 0;
return 1;
}
void graph_mst_kruskal(graph g, struct edge tree_edges[], int *tree_edge_num)
{
set set_array[g->v_num];
for (int i = 0; i < g->v_num; i++) {
int *p = malloc(sizeof(int));
*p = i;
set_array[i] = set_create(p);
}
struct edge edges[g->e_num];
int edge_num = 0;
graph_get_edges(g,edges, &edge_num);
quick_sort(edges, sizeof(struct edge), 0, edge_num - 1, cmp_edge);
*tree_edge_num = 0;
for (int i = 0; i < edge_num; i++) {
struct edge edge = edges[i];
if (find_set(set_array[edge.u]) !=
find_set(set_array[edge.v])) {
tree_edges[(*tree_edge_num)++] = edge;
set_union(set_array[edge.u], set_array[edge.v]);
}
}
for(int i=0;iv_num;i++)
{
set_destroy(set_array[i],free);
}
}
int main()
{
//数据根据书上的图23-1
char *str_vertex[9] = { "a", "b", "c", "d", "e", "f", "g", "h", "i" };
graph g = graph_create(9, str_vertex);
struct edge edges[] = {
{0, 1, 4}, {0, 7, 8}, {1, 7, 11},
{1, 2, 8}, {2, 8, 2}, {2, 5, 4}, {2, 3, 7},
{3, 4, 9}, {3, 5, 14}, {4, 5, 10}, {5, 6, 2},
{6, 7, 1}, {6, 8, 6}, {7, 8, 7}
};
for (unsigned i = 0; i < sizeof(edges) / sizeof(edges[0]); i++) {
graph_insert_edge(g,edges[i]);
}
printf("图信息:\n");
graph_display(g);
struct edge tree_edges[sizeof(edges) / sizeof(edges[0])];
int edge_tree_num;
printf("最小生成树的边集是:\n");
graph_mst_kruskal(g,tree_edges, &edge_tree_num);
int weight_sum = 0;
for (int i = 0; i < edge_tree_num; i++) {
struct edge e = tree_edges[i];
weight_sum += e.w;
printf("%s %s %d\n", str_vertex[e.u],str_vertex[e.v],e.w);
}
printf("最小生成树的权值之和是:%d\n",weight_sum);
graph_destroy(g);
return 0;
}
22.2.2 Prim算法
22.2.2.1 Prim算法,使用最小优先级队列实现
#include
#include
#include
#include
#include
typedef struct graph_type *graph;
struct edge {
int u;
int v;
int w;
};
struct graph_node {
int key;
int w;
struct graph_node *next;
};
void graph_node_ini(struct graph_node *x, int key, int w)
{
x->key = key;
x->w = w;
x->next = NULL;
}
struct vertex {
int dis;
int parent;
bool in_queue; //是否在队列里面
char str_vertex[256]; //顶点的字符串表示,显示用
};
void vertex_ini(struct vertex *v)
{
v->dis = INT_MAX;
v->parent = -1;
v->in_queue = false;
strcpy(v->str_vertex, "");
}
struct graph_type {
struct graph_node **adj;
struct vertex *vertex_array;
int v_num;
int e_num;
};
//顶点是编号为0~v_num-1的数,str_vertex是顶点的字符串表示,显示用
graph graph_create(int v_num, char *str_vertex[])
{
graph g = malloc(sizeof(struct graph_type));
g->v_num = v_num;
g->e_num = 0;
g->adj = malloc(sizeof(struct graph_node *) * v_num);
g->vertex_array = malloc(sizeof(struct vertex) * v_num);
for (int i = 0; i < v_num; i++) {
g->adj[i] = NULL;
strcpy(g->vertex_array[i].str_vertex, str_vertex[i]);
}
return g;
}
void graph_destroy(graph g)
{
for (int i = 0; i < g->v_num; i++) {
for (struct graph_node * x = g->adj[i]; x != NULL;) {
struct graph_node *del = x;
x = x->next;
free(del);
}
}
free(g->adj);
free(g->vertex_array);
free(g);
}
void graph_insert_edge(graph g, struct edge e)
{
struct graph_node *u = malloc(sizeof(struct graph_node));
graph_node_ini(u, e.u, e.w);
struct graph_node *v = malloc(sizeof(struct graph_node));
graph_node_ini(v, e.v, e.w);
//从表头插入,将v插入到表头u
v->next = g->adj[e.u];
g->adj[e.u] = v;
//从表头插入,将u插入到表头v
u->next = g->adj[e.v];
g->adj[e.v] = u;
++g->e_num;
}
void graph_display(graph g)
{
printf("%d vertices,%d edges\n", g->v_num, g->e_num);
for (int i = 0; i < g->v_num; i++) {
printf("%s: ", g->vertex_array[i].str_vertex);
for (struct graph_node * x = g->adj[i]; x != NULL; x = x->next) {
printf("%s,%d ", g->vertex_array[x->key].str_vertex,
x->w);
}
printf("\n");
}
}
void swap(void *a, void *b, size_t elem_size)
{
if (a == NULL || b == NULL || a == b)
return;
char temp[elem_size]; /*变长数组 */
memcpy(temp, a, elem_size);
memcpy(a, b, elem_size);
memcpy(b, temp, elem_size);
}
/*基于索引堆的优先队列*/
typedef struct priority_queue_index_type *priority_queue;
struct priority_queue_index_type {
int heap_size;
int *index_array;
int *index_pos_array; /*这个数组记录了索引在堆中位置 */
void *data_array;
size_t elem_size;
int (*comp) (const void *, const void *);
};
int parent(int i)
{
return (i - 1) / 2;
}
int left_child(int i)
{
return i * 2 + 1;
}
int right_child(int i)
{
return i * 2 + 2;
}
void swap_index(priority_queue pq, int i, int j)
{
swap(&pq->index_pos_array[i], &pq->index_pos_array[j], sizeof(int));
pq->index_array[pq->index_pos_array[i]] = i;
pq->index_array[pq->index_pos_array[j]] = j;
}
/*最小堆用的比较函数*/
bool compare(priority_queue pq, int left, int right)
{
if (pq->data_array == NULL)
return false;
char *pc_array = pq->data_array;
return pq->comp(&pc_array[left * pq->elem_size],
&pc_array[right * pq->elem_size]) > 0;
}
void heapify(priority_queue pq, int i)
{
int left = left_child(i);
int right = right_child(i);
int largest = i;
if (left < pq->heap_size
&& compare(pq, pq->index_array[largest], pq->index_array[left])) {
largest = left;
}
if (right < pq->heap_size
&& compare(pq, pq->index_array[largest], pq->index_array[right])) {
largest = right;
}
if (largest != i) {
swap_index(pq, pq->index_array[i], pq->index_array[largest]);
heapify(pq, largest);
}
}
void fix_up(priority_queue pq, int i)
{
while (i > 0
&& compare(pq, pq->index_array[parent(i)], pq->index_array[i])) {
swap_index(pq, pq->index_array[parent(i)], pq->index_array[i]);
i = parent(i);
}
}
priority_queue priority_queue_create(void *p_data_array, size_t elem_size,
int length, int (*comp) (const void *,
const void *))
{
priority_queue pq = malloc(sizeof(struct priority_queue_index_type));
pq->index_array = malloc(sizeof(int) * length);
pq->index_pos_array = malloc(sizeof(int) * length);
pq->data_array = p_data_array;
pq->elem_size = elem_size;
pq->heap_size = 0;
pq->comp = comp;
return pq;
}
void priority_queue_destroy(priority_queue pq)
{
free(pq->index_array);
free(pq->index_pos_array);
free(pq);
}
int priority_queue_top(priority_queue pq)
{
return pq->index_array[0];
}
/*去掉并返回堆的第一个元素 */
int priority_queue_extract_top(priority_queue pq)
{
swap_index(pq, pq->index_array[0], pq->index_array[pq->heap_size - 1]);
--pq->heap_size;
heapify(pq, 0);
return pq->index_array[pq->heap_size];
}
/*把元素的索引插入队列 */
void priority_queue_insert(priority_queue pq, int index)
{
++pq->heap_size;
int i = pq->heap_size - 1;
pq->index_array[i] = index;
pq->index_pos_array[index] = i;
fix_up(pq, i);
}
bool priority_queue_is_empty(priority_queue pq)
{
return pq->heap_size == 0;
}
/*下标为index的数据修改了,调用这个函数来修复索引堆*/
void priority_queue_change_index(priority_queue pq, int index)
{
fix_up(pq, pq->index_pos_array[index]);
heapify(pq, pq->index_pos_array[index]);
}
int cmp_vertex(const void *p1, const void *p2)
{
const struct vertex *pa = p1;
const struct vertex *pb = p2;
if (pa->dis < pb->dis)
return -1;
if (pa->dis == pb->dis)
return 0;
return 1;
}
void graph_mst_prim(graph g, int r, struct edge tree_edges[],
int *tree_edge_num)
{
priority_queue pq =
priority_queue_create(g->vertex_array, sizeof(struct vertex),
g->v_num, cmp_vertex);
for (int i = 0; i < g->v_num; i++) {
g->vertex_array[i].dis = INT_MAX;
g->vertex_array[i].parent = -1;
g->vertex_array[i].in_queue = true;
priority_queue_insert(pq, i);
}
g->vertex_array[r].dis = 0;
priority_queue_change_index(pq, r);
*tree_edge_num = 0;
while (!priority_queue_is_empty(pq)) {
int u = priority_queue_extract_top(pq);
if (u != r) {
struct edge edge = { g->vertex_array[u].parent, u,
g->vertex_array[u].dis
};
tree_edges[(*tree_edge_num)++] = edge;
}
g->vertex_array[u].in_queue = false; //表示已经出队
for (struct graph_node * x = g->adj[u]; x != NULL; x = x->next) {
int v = x->key;
//在队列中
if (g->vertex_array[v].in_queue
&& x->w < g->vertex_array[v].dis) {
g->vertex_array[v].parent = u;
g->vertex_array[v].dis = x->w;
priority_queue_change_index(pq, v);
}
}
}
priority_queue_destroy(pq);
}
int main()
{
//数据根据书上的图23-1
char *str_vertex[9] = { "a", "b", "c", "d", "e", "f", "g", "h", "i" };
graph g = graph_create(9, str_vertex);
struct edge edges[] = {
{0, 1, 4}, {0, 7, 8}, {1, 7, 11},
{1, 2, 8}, {2, 8, 2}, {2, 5, 4}, {2, 3, 7},
{3, 4, 9}, {3, 5, 14}, {4, 5, 10}, {5, 6, 2},
{6, 7, 1}, {6, 8, 6}, {7, 8, 7}
};
for (unsigned i = 0; i < sizeof(edges) / sizeof(edges[0]); i++) {
graph_insert_edge(g, edges[i]);
}
printf("图信息:\n");
graph_display(g);
struct edge tree_edges[sizeof(edges) / sizeof(edges[0])];
int edge_tree_num;
printf("最小生成树的边集是:\n");
graph_mst_prim(g, 0, tree_edges, &edge_tree_num);
int weight_sum = 0;
for (int i = 0; i < edge_tree_num; i++) {
struct edge e = tree_edges[i];
weight_sum += e.w;
printf("%s %s %d\n", str_vertex[e.u], str_vertex[e.v], e.w);
}
printf("最小生成树的权值之和是:%d\n", weight_sum);
graph_destroy(g);
return 0;
}
22.2.2.2 Prim算法,使用斐波那契堆实现
#include
#include
#include
#include
#include
#include
typedef struct graph_type *graph;
struct edge {
int u;
int v;
int w;
};
struct graph_node {
int key;
int w;
struct graph_node *next;
};
void graph_node_ini(struct graph_node *x, int key, int w)
{
x->key = key;
x->w = w;
x->next = NULL;
}
struct vertex {
int v; //顶点
int dis;
int parent;
char str_vertex[256]; //顶点的字符串表示,显示用
};
void vertex_ini(struct vertex *v)
{
v->v = -1;
v->dis = INT_MAX;
v->parent = -1;
strcpy(v->str_vertex, "");
}
struct graph_type {
struct graph_node **adj;
struct vertex *vertex_array;
int v_num;
int e_num;
};
//顶点是编号为0~v_num-1的数,str_vertex是顶点的字符串表示,显示用
graph graph_create(int v_num, char *str_vertex[])
{
graph g = malloc(sizeof(struct graph_type));
g->v_num = v_num;
g->e_num = 0;
g->adj = malloc(sizeof(struct graph_node *) * v_num);
g->vertex_array = malloc(sizeof(struct vertex) * v_num);
for (int i = 0; i < v_num; i++) {
g->adj[i] = NULL;
strcpy(g->vertex_array[i].str_vertex, str_vertex[i]);
}
return g;
}
void graph_destroy(graph g)
{
for (int i = 0; i < g->v_num; i++) {
for (struct graph_node * x = g->adj[i]; x != NULL;) {
struct graph_node *del = x;
x = x->next;
free(del);
}
}
free(g->adj);
free(g->vertex_array);
free(g);
}
void graph_insert_edge(graph g, struct edge e)
{
struct graph_node *u = malloc(sizeof(struct graph_node));
graph_node_ini(u, e.u, e.w);
struct graph_node *v = malloc(sizeof(struct graph_node));
graph_node_ini(v, e.v, e.w);
//从表头插入,将v插入到表头u
v->next = g->adj[e.u];
g->adj[e.u] = v;
//从表头插入,将u插入到表头v
u->next = g->adj[e.v];
g->adj[e.v] = u;
++g->e_num;
}
void graph_display(graph g)
{
printf("%d vertices,%d edges\n", g->v_num, g->e_num);
for (int i = 0; i < g->v_num; i++) {
printf("%s: ", g->vertex_array[i].str_vertex);
for (struct graph_node * x = g->adj[i]; x != NULL; x = x->next) {
printf("%s,%d ", g->vertex_array[x->key].str_vertex,
x->w);
}
printf("\n");
}
}
typedef struct heap *heap;
struct heap_node {
void *key;
int degree;
bool mark;
struct heap_node *child;
struct heap_node *left;
struct heap_node *right;
struct heap_node *parent;
};
struct heap {
int (*comp) (const void *, const void *);
struct heap_node *min;
int num;
};
void heap_node_ini(struct heap_node *x, void *key)
{
x->key = key;
x->degree = 0;
x->mark = false;
x->parent = NULL;
x->child = NULL;
x->left = x;
x->right = x;
}
void swap(void *a, void *b, size_t elem_size)
{
if (a == NULL || b == NULL || a == b)
return;
char temp[elem_size]; /*变长数组 */
memcpy(temp, a, elem_size);
memcpy(a, b, elem_size);
memcpy(b, temp, elem_size);
}
heap heap_create(int (*comp) (const void *, const void *))
{
heap h = malloc(sizeof(struct heap));
h->comp = comp;
h->num = 0;
h->min = NULL;
return h;
}
//删除结点,如果只有x一个结点的话,这个函数无效
void list_delete(struct heap_node **pos, struct heap_node *x)
{
if (x->right == x) //只有一个结点
{
*pos = NULL;
return;
}
x->left->right = x->right;
x->right->left = x->left;
if (*pos == x) {
*pos = x->right;
}
}
//插入结点x到pos的左边,如果pos为空,pos=x
void list_insert(struct heap_node **pos, struct heap_node *x)
{
if (*pos == NULL) {
*pos = x;
x->left = x;
x->right = x;
} else {
x->left = (*pos)->left;
(*pos)->left->right = x;
x->right = (*pos);
(*pos)->left = x;
}
}
void add_root(heap h, struct heap_node *x)
{
list_insert(&h->min, x);
x->parent = NULL;
x->mark = false;
if (h->comp(x->key, h->min->key) < 0) {
h->min = x;
}
}
//下面的过程将结点x插入斐波那契堆中,假定结点x已被分配,且key[x]也已填有内容
void heap_insert(heap h, struct heap_node *x)
{
x->degree = 0;
x->parent = NULL;
x->child = NULL;
x->left = x;
x->right = x;
add_root(h, x);
++h->num;
}
//最小结点
struct heap_node *heap_minimum(heap h)
{
return h->min;
}
void heap_destroy(heap h);
//将另一个斐波那契堆合并到当前堆,另一堆合并到当前最小结点的右边
void heap_union(heap ha, heap hb)
{
if (hb == NULL || hb->min == NULL) {
return;
}
if (ha->min == NULL) {
ha->min = hb->min;
} else {
//最小结点的右边结点
struct heap_node *ha_min_right = ha->min->right;
ha->min->right = hb->min;
//另一个堆最小结点的左结点,即最后一个结点
struct heap_node *hb_min_left = hb->min->left;
hb->min->left = ha->min;
hb_min_left->right = ha_min_right;
ha_min_right->left = hb_min_left;
}
if (ha->min == NULL
|| (hb->min != NULL && ha->comp(hb->min->key, ha->min->key) < 0)) {
ha->min = hb->min;
}
ha->num += hb->num;
hb->min = NULL;
heap_destroy(hb);
}
void link(heap h, struct heap_node *y, struct heap_node *x)
{
list_delete(&h->min, y);
list_insert(&x->child, y);
y->parent = x;
y->mark = false;
++x->degree;
}
//合并根表
void consolidate(heap h)
{
if (h->min == NULL)
return;
int D = floor(log(h->num) / log(1.618)); //计算D值
struct heap_node *A[D];
for (int i = 0; i < D; i++) {
A[i] = NULL;
}
struct heap_node *x = NULL;
struct heap_node *y = NULL;
int d;
struct heap_node *w = h->min;
struct heap_node *end = h->min->left;
bool loop_flag = true;
while (loop_flag) {
x = w;
if (w != end) {
w = w->right;
} else {
loop_flag = false; //w到达最后一个结点,循环结束
}
d = x->degree;
while (A[d] != NULL) {
y = A[d];
if (h->comp(x->key, y->key) > 0) {
swap(&x, &y, sizeof(struct heap_node *));
}
link(h, y, x);
A[d] = NULL;
++d;
}
A[d] = x;
}
h->min = NULL;
for (int i = 0; i < D; ++i) {
if (A[i] != NULL) {
add_root(h, A[i]);
}
}
}
//抽取具有最小关键字的结点,并返回一个指向该结点的指针
struct heap_node *heap_extract_min(heap h)
{
struct heap_node *z = h->min;
if (z == NULL)
return NULL;
struct heap_node *x = NULL;
while (z->degree > 0) {
x = z->child;
if (x->right == x) {
z->child = NULL;
} else {
z->child = z->child->right;
}
list_delete(&z->child, x);
add_root(h, x);
--z->degree;
}
if (z == z->right) {
list_delete(&h->min, z);
} else {
list_delete(&h->min, z);
consolidate(h);
}
--h->num;
return z;
}
void cut(heap h, struct heap_node *x, struct heap_node *y)
{
list_delete(&y->child, x);
add_root(h, x);
--y->degree;
}
void cascading_cut(heap h, struct heap_node *y)
{
struct heap_node *z = y->parent;
if (z == NULL)
return;
if (y->mark == false) {
y->mark = true;
} else {
cut(h, y, z);
cascading_cut(h, z);
}
}
//将斐波那契堆中的某一结点x的关键字减少为一个新值k,如果k大于x的当前关键字值,直接返回
void heap_decrease_key(heap h, struct heap_node *x)
{
struct heap_node *y = x->parent;
if (y != NULL && h->comp(x->key, y->key) < 0) {
cut(h, x, y);
cascading_cut(h, y);
}
if (h->comp(x->key, h->min->key) < 0) {
h->min = x;
}
}
bool heap_is_empty(heap h)
{
return h->min == NULL;
}
void heap_destroy(heap h)
{
while (!heap_is_empty(h)) {
struct heap_node *x = heap_extract_min(h);
free(x->key);
free(x);
}
free(h);
}
int cmp_vertex(const void *p1, const void *p2)
{
const struct vertex *pa = p1;
const struct vertex *pb = p2;
if (pa->dis < pb->dis)
return -1;
if (pa->dis == pb->dis)
return 0;
return 1;
}
void graph_mst_prim(graph g, int r, struct edge tree_edges[],
int *tree_edge_num)
{
heap h = heap_create(cmp_vertex);
struct heap_node *x = NULL;
struct heap_node *node_array[g->v_num];
struct vertex *p_vertex;
for (int i = 0; i < g->v_num; i++) {
x = malloc(sizeof(struct heap_node));
heap_node_ini(x,&g->vertex_array[i]);
p_vertex=x->key;
p_vertex->dis = INT_MAX;
p_vertex->parent = -1;
p_vertex->v = i;
node_array[i] = x;
heap_insert(h, x);
}
p_vertex = node_array[r]->key;
p_vertex->dis = 0;
heap_decrease_key(h, node_array[r]);
*tree_edge_num = 0;
while (!heap_is_empty(h)) {
x = heap_extract_min(h);
p_vertex = x->key;
int u = p_vertex->v;
if (u != r) {
struct edge e = { p_vertex->parent, u, p_vertex->dis };
tree_edges[(*tree_edge_num)++] = e;
}
free(x);
node_array[u] = NULL;
for (struct graph_node * p = g->adj[u]; p != NULL; p = p->next) {
int v = p->key;
//在队列中
if (node_array[v] != NULL) {
p_vertex = node_array[v]->key;
if (p->w < p_vertex->dis) {
p_vertex->parent = u;
p_vertex->dis = p->w;
heap_decrease_key(h, node_array[v]);
}
}
}
}
heap_destroy(h);
}
int main()
{
//数据根据书上的图23-1
char *str_vertex[9] = { "a", "b", "c", "d", "e", "f", "g", "h", "i" };
graph g = graph_create(9, str_vertex);
struct edge edges[] = {
{0, 1, 4}, {0, 7, 8}, {1, 7, 11},
{1, 2, 8}, {2, 8, 2}, {2, 5, 4}, {2, 3, 7},
{3, 4, 9}, {3, 5, 14}, {4, 5, 10}, {5, 6, 2},
{6, 7, 1}, {6, 8, 6}, {7, 8, 7}
};
for (unsigned i = 0; i < sizeof(edges) / sizeof(edges[0]); i++) {
graph_insert_edge(g, edges[i]);
}
printf("图信息:\n");
graph_display(g);
struct edge tree_edges[sizeof(edges) / sizeof(edges[0])];
int edge_tree_num;
printf("最小生成树的边集是:\n");
graph_mst_prim(g, 0, tree_edges, &edge_tree_num);
int weight_sum = 0;
for (int i = 0; i < edge_tree_num; i++) {
struct edge e = tree_edges[i];
weight_sum += e.w;
printf("%s %s %d\n", str_vertex[e.u], str_vertex[e.v], e.w);
}
printf("最小生成树的权值之和是:%d\n", weight_sum);
graph_destroy(g);
return 0;
}
22.2.2.3 Prim算法,使用二项堆实现
#include
#include
#include
#include
#include
typedef struct graph_type *graph;
struct edge {
int u;
int v;
int w;
};
struct vertex {
int v; //顶点
int dis;
int parent;
char str_vertex[256]; //顶点的字符串表示,显示用
//堆结点发生交换时,这个数组要更新相应位置的指针
struct heap_node **node_array;
};
struct graph_node {
int key;
int w;
struct graph_node *next;
};
void graph_node_ini(struct graph_node *x, int key, int w)
{
x->key = key;
x->w = w;
x->next = NULL;
}
struct graph_type {
struct graph_node **adj;
struct vertex *vertex_array;
int v_num;
int e_num;
};
//顶点是编号为0~v_num-1的数,str_vertex是顶点的字符串表示,显示用
graph graph_create(int v_num, char *str_vertex[])
{
graph g = malloc(sizeof(struct graph_type));
g->v_num = v_num;
g->e_num = 0;
g->adj = malloc(sizeof(struct graph_node *) * v_num);
g->vertex_array = malloc(sizeof(struct vertex) * v_num);
for (int i = 0; i < v_num; i++) {
g->adj[i] = NULL;
strcpy(g->vertex_array[i].str_vertex, str_vertex[i]);
}
return g;
}
void graph_destroy(graph g)
{
for (int i = 0; i < g->v_num; i++) {
for (struct graph_node * x = g->adj[i]; x != NULL;) {
struct graph_node *del = x;
x = x->next;
free(del);
}
}
free(g->adj);
free(g->vertex_array);
free(g);
}
void graph_insert_edge(graph g, struct edge e)
{
struct graph_node *u = malloc(sizeof(struct graph_node));
graph_node_ini(u, e.u, e.w);
struct graph_node *v = malloc(sizeof(struct graph_node));
graph_node_ini(v, e.v, e.w);
//从表头插入,将v插入到表头u
v->next = g->adj[e.u];
g->adj[e.u] = v;
//从表头插入,将u插入到表头v
u->next = g->adj[e.v];
g->adj[e.v] = u;
++g->e_num;
}
void graph_display(graph g)
{
printf("%d vertices,%d edges\n", g->v_num, g->e_num);
for (int i = 0; i < g->v_num; i++) {
printf("%s: ", g->vertex_array[i].str_vertex);
for (struct graph_node * x = g->adj[i]; x != NULL; x = x->next) {
printf("%s,%d ", g->vertex_array[x->key].str_vertex,
x->w);
}
printf("\n");
}
}
typedef struct binomial_heap *heap;
struct heap_node {
void *key;
int degree;
struct heap_node *child;
struct heap_node *sibling;
struct heap_node *parent;
};
struct binomial_heap {
int (*comp) (const void *, const void *);
//这个函数是用于结点交换时通知调用
void (*on_swap) (struct heap_node *, struct heap_node *);
struct heap_node *head;
};
void swap(void *a, void *b, size_t elem_size)
{
if (a == NULL || b == NULL || a == b)
return;
char temp[elem_size]; /*变长数组 */
memcpy(temp, a, elem_size);
memcpy(a, b, elem_size);
memcpy(b, temp, elem_size);
}
void heap_node_ini(struct heap_node *x, void *key)
{
x->key = key;
x->degree = 0;
x->parent = NULL;
x->child = NULL;
x->sibling = NULL;
}
heap heap_create(int (*comp) (const void *, const void *),
void (*on_swap) (struct heap_node *, struct heap_node *))
{
heap h = malloc(sizeof(struct binomial_heap));
h->comp = comp;
h->on_swap = on_swap;
h->head = NULL;
return h;
}
//返回一个指针,它指向包含n个结点的二项堆H中具有最小关键字的结点
struct heap_node *heap_minimum(heap h)
{
struct heap_node *y = NULL;
struct heap_node *x = h->head;
void *min;
bool first = true;
while (x != NULL) {
if (first || h->comp(x->key, min) < 0) {
first = false;
min = x->key;
y = x;
}
x = x->sibling;
}
return y;
}
bool heap_is_empty(heap h)
{
return h->head == NULL;
}
//将结点y为根和z为根的树连接过来,使z成为y的父结点
void link(struct heap_node *y, struct heap_node *z)
{
y->parent = z;
y->sibling = z->child;
z->child = y;
z->degree = z->degree + 1;
}
void heap_destroy(heap h);
//将ha和hb合并成一个按度数的单调递增次序排列的链表
struct heap_node *heap_merge(heap ha, heap hb)
{
struct heap_node *pa = ha->head;
struct heap_node *pb = hb->head;
struct heap_node *head = NULL;
struct heap_node *tail = NULL;
while (pa != NULL && pb != NULL) {
if (pa->degree <= pb->degree) {
if (head == NULL) {
head = pa;
tail = pa;
pa = pa->sibling;
tail->sibling = NULL;
} else {
tail->sibling = pa;
pa = pa->sibling;
tail = tail->sibling;
tail->sibling = NULL;
}
} else {
if (head == NULL) {
head = pb;
tail = pb;
pb = pb->sibling;
tail->sibling = NULL;
} else {
tail->sibling = pb;
pb = pb->sibling;
tail = tail->sibling;
tail->sibling = NULL;
}
}
}
if (pa != NULL && pb == NULL) {
if (head == NULL) {
head = pa;
tail = pa;
} else {
tail->sibling = pa;
}
}
if (pa == NULL && pb != NULL) {
if (head == NULL) {
head = pb;
tail = pb;
} else {
tail->sibling = pb;
}
}
hb->head = NULL;
heap_destroy(hb);
return head;
}
//将hb合并到ha中
void heap_union(heap ha, heap hb)
{
//将ha和hb的根表合并成一个按度数的单调递增次序排列的链表
ha->head = heap_merge(ha, hb);
if (ha->head == NULL) {
return;
}
struct heap_node *prev = NULL;
struct heap_node *x = ha->head;
struct heap_node *next = x->sibling;
while (next != NULL) {
//情况1:x->degree!=next->degree
//情况2:x->degree==next->degree==next->sibling->degree
if ((x->degree != next->degree) ||
(next->sibling != NULL
&& next->sibling->degree == x->degree)) {
prev = x;
x = next;
} else if (ha->comp(x->key, next->key) <= 0) {
//情况3:x->degree==next->degree!=next->sibling->degree,x->key<=next->key
x->sibling = next->sibling;
link(next, x);
} else {
//情况4:x->degree==next->degree!=next->sibling->degree,next->key<=x->key
if (prev == NULL) {
ha->head = next;
} else {
prev->sibling = next;
}
link(x, next);
x = next;
}
next = x->sibling;
}
}
//反转x的孩子,随便把x的孩子的父结点置为空
void reverse_children(struct heap_node *x)
{
if (x == NULL || x->child == NULL)
return;
struct heap_node *prev = x->child;
struct heap_node *current = prev->sibling;
struct heap_node *next = NULL;
while (current != NULL) {
next = current->sibling;
current->sibling = prev;
current->parent = NULL;
prev = current;
current = next;
}
x->child->sibling = NULL;
x->child->parent = NULL;
x->child = prev;
}
//下面的过程将结点x插入二项堆中,假定结点x已被分配,且key[x]也已填有内容
void heap_insert(heap h, struct heap_node *x)
{
heap hb = heap_create(h->comp, h->on_swap);
hb->head = x;
heap_union(h, hb);
}
struct heap_node *heap_remove_minimum(heap h)
{
struct heap_node *x = h->head;
if (x == NULL)
return NULL;
struct heap_node *prev = NULL;
struct heap_node *min_prev = NULL;
void *min;
bool first = true;
while (x != NULL) {
if (first || h->comp(x->key, min) < 0) {
first = false;
min = x->key;
min_prev = prev;
}
prev = x;
x = x->sibling;
}
//删除结点x
if (min_prev == NULL) {
x = h->head;
h->head = x->sibling;
} else {
x = min_prev->sibling;
min_prev->sibling = x->sibling;
}
return x;
}
//抽取具有最小关键字的结点,并返回一个指向该结点的指针
struct heap_node *heap_extract_min(heap h)
{
struct heap_node *x = heap_remove_minimum(h);
if (x == NULL)
return NULL;
reverse_children(x);
heap hb = heap_create(h->comp, h->on_swap);
hb->head = x->child;
heap_union(h, hb);
return x;
}
//将二项堆中的某一结点x的关键字减少为一个新值k,如果k大于x的当前关键字值,直接返回
void heap_decrease_key(heap h, struct heap_node *x)
{
struct heap_node *y = x;
struct heap_node *z = y->parent;
while (z != NULL && h->comp(y->key, z->key) < 0) {
swap(&y->key, &z->key, sizeof(void *));
if (h->on_swap != NULL) {
h->on_swap(y, z);
}
y = z;
z = y->parent;
}
}
void display_node(struct heap_node *x, void (*print_key) (const void *))
{
print_key(x->key);
printf(" ");
if (x->child != NULL) {
display_node(x->child, print_key);
}
if (x->sibling != NULL) {
display_node(x->sibling, print_key);
}
}
void heap_display(heap h, void (*print_key) (const void *))
{
display_node(h->head, print_key);
printf("\n");
}
void heap_destroy(heap h)
{
while (!heap_is_empty(h)) {
struct heap_node *x = heap_extract_min(h);
free(x->key);
free(x);
}
free(h);
}
void vertex_ini(struct vertex *v)
{
v->v = -1;
v->dis = INT_MAX;
v->parent = -1;
strcpy(v->str_vertex, "");
}
void on_swap(struct heap_node *left, struct heap_node *right)
{
struct vertex *lv = left->key;
struct vertex *rv = right->key;
lv->node_array[lv->v] = left;
lv->node_array[rv->v] = right;
}
int cmp_vertex(const void *p1, const void *p2)
{
const struct vertex *pa = p1;
const struct vertex *pb = p2;
if (pa->dis < pb->dis)
return -1;
if (pa->dis == pb->dis)
return 0;
return 1;
}
void graph_mst_prim(graph g, int r, struct edge tree_edges[],
int *tree_edge_num)
{
heap h = heap_create(cmp_vertex, on_swap);
struct heap_node *x = NULL;
struct heap_node *node_array[g->v_num];
struct vertex *p_vertex;
for (int i = 0; i < g->v_num; i++) {
x = malloc(sizeof(struct heap_node));
heap_node_ini(x,&g->vertex_array[i]);
p_vertex = x->key;
p_vertex->dis = INT_MAX;
p_vertex->parent = -1;
p_vertex->v = i;
p_vertex->node_array = node_array;
node_array[i] = x;
heap_insert(h, x);
}
p_vertex = node_array[r]->key;
p_vertex->dis = 0;
heap_decrease_key(h, node_array[r]);
*tree_edge_num = 0;
while (!heap_is_empty(h)) {
x = heap_extract_min(h);
p_vertex = x->key;
int u = p_vertex->v;
if (u != r) {
struct edge e = { p_vertex->parent, u, p_vertex->dis };
tree_edges[(*tree_edge_num)++] = e;
}
free(x);
node_array[u] = NULL;
for (struct graph_node * p = g->adj[u]; p != NULL; p = p->next) {
int v = p->key;
//在队列中
if (node_array[v] != NULL) {
p_vertex = node_array[v]->key;
if (p->w < p_vertex->dis) {
p_vertex->parent = u;
p_vertex->dis = p->w;
heap_decrease_key(h, node_array[v]);
}
}
}
}
heap_destroy(h);
}
int main()
{
//数据根据书上的图23-1
char *str_vertex[9] = { "a", "b", "c", "d", "e", "f", "g", "h", "i" };
graph g = graph_create(9, str_vertex);
struct edge edges[] = {
{0, 1, 4}, {0, 7, 8}, {1, 7, 11},
{1, 2, 8}, {2, 8, 2}, {2, 5, 4}, {2, 3, 7},
{3, 4, 9}, {3, 5, 14}, {4, 5, 10}, {5, 6, 2},
{6, 7, 1}, {6, 8, 6}, {7, 8, 7}
};
for (unsigned i = 0; i < sizeof(edges) / sizeof(edges[0]); i++) {
graph_insert_edge(g, edges[i]);
}
printf("图信息:\n");
graph_display(g);
struct edge tree_edges[sizeof(edges) / sizeof(edges[0])];
int edge_tree_num;
printf("最小生成树的边集是:\n");
graph_mst_prim(g, 0, tree_edges, &edge_tree_num);
int weight_sum = 0;
for (int i = 0; i < edge_tree_num; i++) {
struct edge e = tree_edges[i];
weight_sum += e.w;
printf("%s %s %d\n", str_vertex[e.u], str_vertex[e.v], e.w);
}
printf("最小生成树的权值之和是:%d\n", weight_sum);
graph_destroy(g);
return 0;
}