最小生成树——prim算法

算法描述  (属于贪心)

1).输入:一个加权连通图,其中顶点集合为V,边集合为E;

2).初始化:Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {},为空;

3).重复下列操作,直到Vnew = V:

a.在集合E中选取权值最小的边,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);

b.将v加入集合Vnew中,将边加入集合Enew中;

4).输出:使用集合Vnew和Enew来描述所得到的最小生成树

 

图例描述

图例 说明 不可选 可选 已选(Vnew)

最小生成树——prim算法_第1张图片

此为原始的加权连通图。每条边一侧的数字代表其权值。 - - -

最小生成树——prim算法_第2张图片

顶点D被任意选为起始点。顶点ABEF通过单条边与D相连。A是距离D最近的顶点,因此将A及对应边AD以高亮表示。 C, G A, B, E, F D

最小生成树——prim算法_第3张图片

下一个顶点为距离DA最近的顶点。BD为9,距A为7,E为15,F为6。因此,FDA最近,因此将顶点F与相应边DF以高亮表示。 C, G B, E, F A, D

最小生成树——prim算法_第4张图片

算法继续重复上面的步骤。距离A为7的顶点B被高亮表示。 C B, E, G A, D, F

最小生成树——prim算法_第5张图片

在当前情况下,可以在CEG间进行选择。CB为8,EB为7,GF为11。点E最近,因此将顶点E与相应边BE高亮表示。

C, E, G A, D, F, B

最小生成树——prim算法_第6张图片

这里,可供选择的顶点只有CGCE为5,GE为9,故选取C,并与边EC一同高亮表示。 C, G A, D, F, B, E

最小生成树——prim算法_第7张图片

顶点G是唯一剩下的顶点,它距F为11,距E为9,E最近,故高亮表示G及相应边EG G A, D, F, B, E, C

最小生成树——prim算法_第8张图片

现在,所有顶点均已被选取,图中绿色部分即为连通图的最小生成树。在此例中,最小生成树的权值之和为39。 A, D, F, B, E, C, G

时间复杂度

最小边、权的数据结构 时间复杂度(总计)
邻接矩阵、搜索 O(V^2)
二叉堆(后文伪代码中使用的数据结构)、邻接表 O((V + E) log(V)) = O(E log(V))
斐波那契堆邻接表 O(E + V log(V))

通过邻接矩阵图表示的简易实现中,找到所有最小权边共需O(V)的运行时间。使用简单的二叉堆与邻接表来表示的话,普里姆算法的运行时间则可缩减为O(ElogV),其中E为连通图的边数,V为顶点数。如果使用较为复杂的斐波那契堆,则可将运行时间进一步缩短为O(E+VlogV),这在连通图足够密集时(当E满足Ω(VlogV)条件时),可较显著地提高运行速度。

你可能感兴趣的:(最小生成树——prim算法)