04-树6 Complete Binary Search Tree (30分)【Python】【数据结构学习(2)】

04-树6 Complete Binary Search Tree (30分)【Python

数据结构学习(2)

A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

The left subtree of a node contains only nodes with keys less than the node’s key.
The right subtree of a node contains only nodes with keys greater than or equal to the node’s key.
Both the left and right subtrees must also be binary search trees.
A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.

Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.

Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤1000). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.

Output Specification:
For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

样例输入为:`

10
1 2 3 4 5 6 7 8 9 0

输出为:

6 3 8 1 5 7 9 0 2 4

解题的心路历程:

在解决这道题时,看了陈越老师的mooc,对于基本的算法框架有了掌握,用了大约1个多小时把框架搭好了,但是如何输出呢?想到了Python中的字典,因此将每一层先用字典储存:

{'1': [6], '2': [3, 8], '3': [1, 5, 7, 9], '4': [0, 2, 4]}

其中key是层数,value是具体值。最后按照遍历顺序输出即可。
但实际上,作为小白,想去很快的解决掉这个问题真的不容易。前前后后花了两天时间,4-5个小时去做。
而且百度了许久,也没找到用python写的,所以我把这篇帖子放了出来,供大家参考。

代码部分

import sys
import numpy as np

#输入部分
n=int(input())
case=sys.stdin.readline().split()
case=sorted([int(i) for i in case])
#print(case)
tree_dic={}#用来储存每一层的对应的元素

#获取完全二叉树的度,度为h+1
def getleftright(n):
    h=int(np.log2(n+1))
    left=np.power(2,h-1)
    x=n-(np.power(2,h)-1)
    if x<=left:
        L=np.power(2,h-1)-1+x
    else:
        L=np.power(2,h)-1
    return L

#主函数
def solve(Aleft,Aright,Troot,ceng=1):
    n=Aright-Aleft+1
    #print("length:"+str(n))
    if n<=0:
        return
    if n==1:
        Troot=Aleft
        case[Troot]#print the root
        if str(ceng) in tree_dic.keys():
            tree_dic[str(ceng)].append(case[Troot])
        else:
            tree_dic[str(ceng)]=[case[Troot]]
        #print(tree_dic)
        return
    L=getleftright(n)
    R=n-L-1
    Troot=Aleft+L
    case[Troot]#print the root
    if str(ceng) in tree_dic.keys():
        tree_dic[str(ceng)].append(case[Troot])
    else:
        tree_dic[str(ceng)]=[case[Troot]]
    #print(tree_dic)
    ceng+=1
    solve(Aleft,L-1+Aleft,Aleft,ceng)#left tree
    solve(Aleft+L+1,Aleft+L+1+R-1,L+1,ceng)#right tree
solve(0,n-1,0,1)

##输出部分
first_flg=False
for ceng_i in tree_dic.values():
    for i in ceng_i:
        if first_flg==True:
            print(' ',end='')
            print(i,end='')
        else:
            print(i,end='')
            first_flg=True
print('')

最后放一张编译成功的图。想知道这样的编译速度是快还是慢啊?
04-树6 Complete Binary Search Tree (30分)【Python】【数据结构学习(2)】_第1张图片

你可能感兴趣的:(数据结构学习)