arxiv2017_Face Detection using Deep Learning:An Improved Faster RCNN Approach

深图智服人脸检测paper,基于faster rcnn,ranking the best among all the published approaches in FDDB until 2017-01
做了改进策略为:
1 feature concatenation
2 hard negative mining
3 multi-scale training:图像训练多尺度,但是尺度从三个scale里面随机选;增加了随机性;
4 model pretraining:先在wider face上来一波
5 proper calibration of key parameters:anchor尺度增加一个64*64

the VJ framework was the first one to apply rectangular Haar-like features in a cascaded Adaboost classifier for achieving real-time face detection.

因为基于frcnn,所以简单介绍了下frcnn:
1 RPN for generating a list of region proposals which likely contain objects, or called regions of interest (RoIs);
2 a Fast RCNN network for classifying a region of image into objects (and background) and refining the boundaries of those regions.

训练步骤,比较简单的:
1 train the CNN model(VGG16 from imagenet) of Faster RCNN using the WIDER FACE dataset.
2 use the same dataset to test the pre-trained model so as to generate hard negatives.
3 These hard negatives are fed into the network as the second step of our training procedure.----就是说通过2中生成的难例,再在wider face上训练一波;
4 The resulting model will be further fine-tuned on the FDDB dataset.
最终 fine-tuning process,两个小技巧:
1 multi-scale training process
2 feature concatenation strategy
3 将检测的bbox从矩形转换为椭圆形(可选);

arxiv2017_Face Detection using Deep Learning:An Improved Faster RCNN Approach_第1张图片

feature concatenation strategy:特征融合策略
比较简单:训练+测试的前向操作中,rpn网络得到了roi,原始roi pooling只在conv上做,论文中在conv3、4、5上做(加个L2正则化),然后做一个concate。剩下的操作就是走fast rcnn了;

arxiv2017_Face Detection using Deep Learning:An Improved Faster RCNN Approach_第2张图片

hard negative mining:只挖掘false positive,OHEM挖掘false positive + false negtive;
multi-scale training:
The Faster RCNN architecture typically adopt a fixed scale for all the training images. FRCNN只使用一个尺度进行训练;论文中用了三个尺度,随机对每张图像用一个尺度做resize,再扔到模型去训练;达到对尺度的不变性;

实验:
wider face中,根据每个人脸的难度赋值,如果困难度大于2,就直接舍弃,不用于训练;图像中有1000个以上的人脸,也不加入训练;anchor数目3*4;
负难例:score > 0.8 & iou with gt < 0.5
训练step3,也就是在fddb上finetune,使用10-fold cross-validation + 多尺度训练(step1 + step 3都使用多尺度);
测试:也是图像多尺度,扔进去做测试;

ablation studies里面很好地说明了本论文中所采用的方法:ID7效果最好

arxiv2017_Face Detection using Deep Learning:An Improved Faster RCNN Approach_第3张图片

论文参考
1 arxiv2017_Face Detection using Deep Learning:An Improved Faster RCNN Approach

你可能感兴趣的:(人脸检测)