[CVPR 2017] Semantic Autoencoder for Zero-Shot Learning论文笔记

http://openaccess.thecvf.com/content_cvpr_2017/papers/Kodirov_Semantic_Autoencoder_for_CVPR_2017_paper.pdf

Semantic Autoencoder for Zero-Shot Learning,Elyor Kodirov Tao Xiang Shaogang Gong,Queen Mary University of London, UK,{e.kodirov, t.xiang, s.gong}@qmul.ac.uk

亮点

  • 通过对耦学习提升零次学习系统的性能(类似CycleGan)
  • 结构非常简洁,且可直接求解,速度非常快
  • 有效应用到其他相关任务(监督聚类)上,证明了范化性能

[CVPR 2017] Semantic Autoencoder for Zero-Shot Learning论文笔记_第1张图片

方法

 

Linear autoencoder

 

[CVPR 2017] Semantic Autoencoder for Zero-Shot Learning论文笔记_第2张图片

Model Formulation

[CVPR 2017] Semantic Autoencoder for Zero-Shot Learning论文笔记_第3张图片

which is a well-known Sylvester equation which can be solved efficiently by the Bartels-Stewart algorithm (matlab sylvester).

零次学习:基于以上算法有两种测试的方法:

  • 将一个未知的类别特征样本xi通过W映射到语义空间(属性)si,通过比较语义空间的距离找到离它最近的类别(无训练样本),即为它的标签
  • 将所有无训练数据类别的语义特征S通过WT映射到特征空间X,通过比较一个未知类别的样本xi和映射到特征空间的类别中心X的距离,找到离它最近的类别,即为它的标签
  • 以上两种算法得到结果的准确度基本相同。

监督聚类:在这个问题中,语义空间即为类别标签空间(one-hot class label)。所有测试数据被影射到训练类别标签空间,然后使用k-means聚合

与已有模型的关系零度学习已有模型一般学习一个满足以下条件的影射:

 

或者,在[54]中将属性影射到特征空间,学习目标变为,

 

文中的算法结合了这两者,而且由于W*=WT,在对耦学习中W不可能太大(否则,x乘以两个范数很大的的矩阵无法恢复原来的初始值),正则化项可以被忽略。

 [CVPR 2017] Semantic Autoencoder for Zero-Shot Learning论文笔记_第4张图片

 

实验

零次学习

数据集:Semantic word vector representation is used for large-scale datasets (ImNet-1 and ImNet-2). We train a skip-gram text model on a corpus of 4.6M Wikipedia documents to obtain the word2vec2 [38, 37] word vectors.

 [CVPR 2017] Semantic Autoencoder for Zero-Shot Learning论文笔记_第5张图片

特征:除 ImNet-1用AlexNet提取外,其他均使用了GoogleNet

结果:

  • Our SAE model achieves the best results on all 6 datasets. 
  • On the smallscale datasets, the gap between our model’s results to the strongest competitor ranges from 3.5% to 6.5%. 
  • On the large-scale datasets, the gaps are even bigger: On the largest ImNet-2, our model improves over the state-of-the-art SS-Voc [22] by 8.8%.
  • Both the encoder and decoder projection functions in our SAE model (SAE (W) and SAE (WT) respectively) can be used for effective ZSL. 
    • The encoder projection function seems to be slightly better overall.
  • Measures how well a zero-shot learning method can trade-off between recognising data from seen classes and that of unseen classes
    • Holding out 20% of the data samples from the seen classes and mixing them with the samples from the unseen classes.
    • On AwA, our model is slightly worse than the SynCstruct [13].
    • However, on the more challenging CUB dataset, our method significantly outperforms the competitors.

聚类

数据集: A synthetic dataset and Oxford Flowers-17 (848 images)

结果:

  • On computational cost, our model (93s) is more expensive than MLCA (39%) but much better than all others (hours~days).
  • Achieves the best clustering accuracy

你可能感兴趣的:([CVPR 2017] Semantic Autoencoder for Zero-Shot Learning论文笔记)