直方图均值化,opencv中必须是灰度图片才能操作。
import cv2 as cv import numpy as np def equalHist_demo(image): gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY) dst = cv.equalizeHist(gray) cv.imshow("equalHist_demo", dst) def clahe_demo(image): gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY) clahe = cv.createCLAHE(clipLimit=5.0, tileGridSize=(8, 8)) dst = clahe.apply(gray) cv.imshow("clahe_demo", dst) def create_rgb_hist(image): h, w, c = image.shape rgbHist = np.zeros([16*16*16, 1], np.float32) bsize = 256 / 16 for row in range(h): for col in range(w): b = image[row, col, 0] g = image[row, col, 1] r = image[row, col, 2] index = np.int(b/bsize)*16*16 + np.int(g/bsize)*16 + np.int(r/bsize) rgbHist[np.int(index), 0] = rgbHist[np.int(index), 0] + 1 return rgbHist def hist_compare(image1, image2): hist1 = create_rgb_hist(image1) hist2 = create_rgb_hist(image2) match1 = cv.compareHist(hist1, hist2, cv.HISTCMP_BHATTACHARYYA) match2 = cv.compareHist(hist1, hist2, cv.HISTCMP_CORREL) match3 = cv.compareHist(hist1, hist2, cv.HISTCMP_CHISQR) print("巴氏距离: %s, 相关性: %s, 卡方: %s"%(match1, match2, match3)) print("--------- Hello Python ---------") src = cv.imread("D:/vcprojects/images/rise.png") cv.namedWindow("input image", cv.WINDOW_AUTOSIZE) #cv.imshow("input image", src) #clahe_demo(src) image1 = cv.imread("D:/javaopencv/lena.png") image2 = cv.imread("D:/javaopencv/lenanoise.png") cv.imshow("image1", image1) cv.imshow("image2", image2) hist_compare(image1, image2) cv.waitKey(0) cv.destroyAllWindows()