前面用的网络是pytorch官方给的一个实例网络,本文参照书本换了一个网络,如下:
代码如下:
class CNNnet(nn.Module):
def __init__(self):
super(CNNnet,self).__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=5,stride=1)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(in_channels=16, out_channels=36,kernel_size=3,stride=1)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(1296, 128) # 1296 = 36 * 6 *6
self.fc2 = nn.Linear(128, 10)
def forward(self,x):
x =self.pool1(F.relu(self.conv1(x)))
x =self.pool2(F.relu(self.conv2(x)))
x = x.view(-1, 36*6*6)
x = F.relu(self.fc2(F.relu(self.fc1(x))))
return x
其中36*6*6怎么计算来的,c*H*W,H和W都是用如下链接给的计算方式得到的:
【pytorch】卷积层输出尺寸的计算公式和分组卷积的weight尺寸的计算https://mp.csdn.net/console/editor/html/107954603
结果如何呢?
当用了如下显示初始化方式后,结果为:
for m in net.modules():
if isinstance(m, nn.Conv2d):
nn.init.normal_(m.weight)
nn.init.xavier_normal_(m.weight)
nn.init.kaiming_normal_(m.weight) # 卷积层初始化
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight) # 全连接层参数初始化
可以看出,其好像陷入了鞍点。其损失没有下降了,那我还是把这个显式初始化参数去掉试一下。
还真有效果,终于loss有值了,但是基本稳定在2.多,2个epoch时:
Accuracy of the network on the 10000 test images: 9 %
Accuracy of plane : 0 %
Accuracy of car : 89 %
Accuracy of bird : 0 %
Accuracy of cat : 0 %
Accuracy of deer : 0 %
Accuracy of dog : 0 %
Accuracy of frog : 4 %
Accuracy of horse : 0 %
Accuracy of ship : 0 %
Accuracy of truck : 0 %
那epoch=10来说,还是加上了显式初始化哈,结果如下:
[10, 2000] loss: 1.785
[10, 4000] loss: 1.834
[10, 6000] loss: 1.833
[10, 8000] loss: 1.813
[10, 10000] loss: 1.865
[10, 12000] loss: 1.834
Finished Training
Accuracy of the network on the 10000 test images: 35 %
Accuracy of plane : 27 %
Accuracy of car : 44 %
Accuracy of bird : 12 %
Accuracy of cat : 42 %
Accuracy of deer : 38 %
Accuracy of dog : 9 %
Accuracy of frog : 47 %
Accuracy of horse : 42 %
Accuracy of ship : 64 %
Accuracy of truck : 24 %
堪忧呀。没有达到书本上的结果。才发现初始学习率lr太高啦!改为lr=0.001。
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
还是如下:
我把初始化全部去掉看看
[1, 2000] loss: 2.133
[1, 4000] loss: 1.955
[1, 6000] loss: 1.930
[1, 8000] loss: 1.907
[1, 10000] loss: 1.850
[1, 12000] loss: 1.849
[2, 2000] loss: 1.774
[2, 4000] loss: 1.805
[2, 6000] loss: 1.802
[2, 8000] loss: 1.781
[2, 10000] loss: 1.790
[2, 12000] loss: 1.796
[3, 2000] loss: 1.763
[3, 4000] loss: 1.784
[3, 6000] loss: 1.830
[3, 8000] loss: 1.771
[3, 10000] loss: 1.805
[3, 12000] loss: 1.830
[4, 2000] loss: 1.803
[4, 4000] loss: 1.805
[4, 6000] loss: 1.814
[4, 8000] loss: 1.790
[4, 10000] loss: 1.805
[4, 12000] loss: 1.805
[5, 2000] loss: 1.834
[5, 4000] loss: 1.851
[5, 6000] loss: 1.846
[5, 8000] loss: 1.836
[5, 10000] loss: 1.857
[5, 12000] loss: 1.859
[6, 2000] loss: 1.814
[6, 4000] loss: 1.811
[6, 6000] loss: 1.859
[6, 8000] loss: 1.908
[6, 10000] loss: 1.873
[6, 12000] loss: 1.857
[7, 2000] loss: 1.812
[7, 4000] loss: 1.865
[7, 6000] loss: 1.836
[7, 8000] loss: 1.873
[7, 10000] loss: 1.873
[7, 12000] loss: 1.912
[8, 2000] loss: 1.840
[8, 4000] loss: 1.880
[8, 6000] loss: 1.897
[8, 8000] loss: 1.881
[8, 10000] loss: 1.855
[8, 12000] loss: 1.882
[9, 2000] loss: 1.812
[9, 4000] loss: 1.820
[9, 6000] loss: 1.873
[9, 8000] loss: 1.824
[9, 10000] loss: 1.868
[9, 12000] loss: 1.870
[10, 2000] loss: 1.853
[10, 4000] loss: 1.842
[10, 6000] loss: 1.832
[10, 8000] loss: 1.820
[10, 10000] loss: 1.878
[10, 12000] loss: 1.838
Finished Training
Accuracy of the network on the 10000 test images: 34 %
Accuracy of plane : 13 %
Accuracy of car : 49 %
Accuracy of bird : 12 %
Accuracy of cat : 38 %
Accuracy of deer : 48 %
Accuracy of dog : 14 %
Accuracy of frog : 35 %
Accuracy of horse : 39 %
Accuracy of ship : 59 %
Accuracy of truck : 30 %
总体而言初始学习率很重要,设置的不好会导致loss不降低,权重初始参数选择也很重要,可能导致loss是NAN或者loss一直某个值
lr = 0.001,pytorch默认初始化方法,结果如下:
[10, 2000] loss: 0.367
[10, 4000] loss: 0.382
[10, 6000] loss: 0.417
[10, 8000] loss: 0.472
[10, 10000] loss: 0.452
[10, 12000] loss: 0.488
Finished Training
Accuracy of the network on the 10000 test images: 68 %
Accuracy of plane : 75 %
Accuracy of car : 78 %
Accuracy of bird : 64 %
Accuracy of cat : 50 %
Accuracy of deer : 49 %
Accuracy of dog : 65 %
Accuracy of frog : 79 %
Accuracy of horse : 71 %
Accuracy of ship : 80 %
Accuracy of truck : 70 %
初始化参数+lr=0.001,loss=2.303不降低了,从下面结果看的话,似乎只学习到了plane的特征,其余特征都没有学习到
[10, 2000] loss: 2.303
[10, 4000] loss: 2.303
[10, 6000] loss: 2.303
[10, 8000] loss: 2.303
[10, 10000] loss: 2.303
[10, 12000] loss: 2.303
Finished Training
Accuracy of the network on the 10000 test images: 10 %
Accuracy of plane : 100 %
Accuracy of car : 0 %
Accuracy of bird : 0 %
Accuracy of cat : 0 %
Accuracy of deer : 0 %
Accuracy of dog : 0 %
Accuracy of frog : 0 %
Accuracy of horse : 0 %
Accuracy of ship : 0 %
Accuracy of truck : 0 %
总的代码:
# -*- coding: utf-8 -*-
'''
@Time : 2020/8/11 17:14
@Author : HHNa
@FileName: add.image.py
@Software: PyCharm
'''
# 导入库及下载数据
import torch
import torchvision
import torchvision.transforms as transforms
import torch.utils.data as data
transform = transforms.Compose([
transforms.ToTensor(),
# torchvision datasets are PILImage images of range [0, 1]
# Tensors of normalized range [-1, 1]
transforms.Normalize((0.5, .5, .5), (.5, .5, .5))
])
trainset = torchvision.datasets.CIFAR10(root=r'./data', train=True, download=False, transform=transform)
trainloader = data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=0)
testset = torchvision.datasets.CIFAR10(root=r'./data', train=False, download=False, transform=transform)
testLoader = data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=0)
classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
import torch.nn as nn
import torch.nn.functional as F
# 定义网络
class CNNnet(nn.Module):
def __init__(self):
super(CNNnet, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=5, stride=1)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(in_channels=16, out_channels=36, kernel_size=3,stride=1)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(1296, 128) # 1296 = 36 * 6 *6
self.fc2 = nn.Linear(128, 10)
def forward(self,x):
x =self.pool1(F.relu(self.conv1(x)))
x =self.pool2(F.relu(self.conv2(x)))
x = x.view(-1, 36*6*6)
x = F.relu(self.fc2(F.relu(self.fc1(x))))
return x
# 检测是否有用的GPU,如果有使用GPU,否则CPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net = CNNnet()
net = net.to(device)
# 查看网络定义了哪些层
print(net)
# 取模型的前面几层
# print(nn.Sequential(*list(net.children()))[:4])
# 显示初始化参数
# for m in net.modules():
# if isinstance(m, nn.Conv2d):
# nn.init.normal_(m.weight)
# nn.init.xavier_normal_(m.weight)
# nn.init.kaiming_normal_(m.weight) # 卷积层初始化
# nn.init.constant_(m.bias, 0)
# elif isinstance(m, nn.Linear):
# nn.init.normal_(m.weight) # 全连接层参数初始化
# 选择优化器
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# train循环
for epoch in range(10): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
# 打印参数
# print("net have {} paramerters in total".format(sum(x.numel() for x in net.parameters())))
# 保存模型
PATH = './cifar_CNNet_epoch-10-init-weight.pth'
torch.save(net.state_dict(), PATH)
# 测试在数据集上的表现
corret = 0
total = 0
with torch.no_grad():
for data in testLoader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
corret += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (100 * corret / total))
# 测试在不同类别上的表现情况
class_correct = list(0. for i in range(10))
# print(class_correct)
class_total = list(0. for i in range(10))
# print(class_total)
with torch.no_grad():
for data in testLoader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = net(images)
_, predicted = torch.max(outputs, 1)
c = (predicted == labels).squeeze() # 去掉为1的维度
for i in range(4):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1
for i in range(10):
print('Accuracy of %5s : %2d %%' % (classes[i], 100 * class_correct[i] / class_total[i]))