中文词频统计
1. 下载一长篇中文小说。
小说:鹿鼎记 作者:金庸
2. 从文件读取待分析文本。
3. 安装并使用jieba进行中文分词。
pip install jieba
import jieba
jieba.lcut(text)
4. 更新词库,加入所分析对象的专业词汇。
jieba.add_word('天罡北斗阵') #逐个添加
jieba.load_userdict(word_dict) #词库文本文件
with open(r'C:\Users\Shinelon\Desktop\python 3.22\金庸小说.txt', 'r', encoding='utf-8') as f:
jinyong = f.read().split('\n')
jieba.load_userdict(jinyong)
newtext = jieba.lcut(text)
参考词库下载地址:https://pinyin.sogou.com/dict/
转换代码:scel_to_text
# -*- coding: utf-8 -*-
import struct
import os
# 拼音表偏移,
startPy = 0x1540;
# 汉语词组表偏移
startChinese = 0x2628;
# 全局拼音表
GPy_Table = {}
# 解析结果
# 元组(词频,拼音,中文词组)的列表
# 原始字节码转为字符串
def byte2str(data):
pos = 0
str = ''
while pos < len(data):
c = chr(struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0])
if c != chr(0):
str += c
pos += 2
return str
# 获取拼音表
def getPyTable(data):
data = data[4:]
pos = 0
while pos < len(data):
index = struct.unpack('H', bytes([data[pos],data[pos + 1]]))[0]
pos += 2
lenPy = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0]
pos += 2
py = byte2str(data[pos:pos + lenPy])
GPy_Table[index] = py
pos += lenPy
# 获取一个词组的拼音
def getWordPy(data):
pos = 0
ret = ''
while pos < len(data):
index = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0]
ret += GPy_Table[index]
pos += 2
return ret
# 读取中文表
def getChinese(data):
GTable = []
pos = 0
while pos < len(data):
# 同音词数量
same = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0]
# 拼音索引表长度
pos += 2
py_table_len = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0]
# 拼音索引表
pos += 2
py = getWordPy(data[pos: pos + py_table_len])
# 中文词组
pos += py_table_len
for i in range(same):
# 中文词组长度
c_len = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0]
# 中文词组
pos += 2
word = byte2str(data[pos: pos + c_len])
# 扩展数据长度
pos += c_len
ext_len = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0]
# 词频
pos += 2
count = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0]
# 保存
GTable.append((count, py, word))
# 到下个词的偏移位置
pos += ext_len
return GTable
def scel2txt(file_name):
print('-' * 60)
with open(file_name, 'rb') as f:
data = f.read()
print("词库名:", byte2str(data[0x130:0x338])) # .encode('GB18030')
print("词库类型:", byte2str(data[0x338:0x540]))
print("描述信息:", byte2str(data[0x540:0xd40]))
print("词库示例:", byte2str(data[0xd40:startPy]))
getPyTable(data[startPy:startChinese])
getChinese(data[startChinese:])
return getChinese(data[startChinese:])
if __name__ == '__main__':
# scel所在文件夹路径
in_path = r"D:\360安全浏览器下载" #修改为你的词库文件存放文件夹
# 输出词典所在文件夹路径
out_path = r"D:\360安全浏览器下载\123" # 转换之后文件存放文件夹
fin = [fname for fname in os.listdir(in_path) if fname[-5:] == ".scel"]
for f in fin:
try:
for word in scel2txt(os.path.join(in_path, f)):
file_path=(os.path.join(out_path, str(f).split('.')[0] + '.txt'))
# 保存结果
with open(file_path,'a+',encoding='utf-8')as file:
file.write(word[2] + '\n')
os.remove(os.path.join(in_path, f))
except Exception as e:
print(e)
pass
5. 生成词频统计
te = {};
for w in newtext:
if len(w) == 1:
continue
else:
te[w] = te.get(w, 0) + 1
6. 排序
tesort = list(te.items())
tesort.sort(key=lambda x: x[1], reverse=True)
7. 排除语法型词汇,代词、冠词、连词等停用词。
stops
tokens=[token for token in wordsls if token not in stops]
with open(r'C:\Users\Shinelon\Desktop\python 3.22\stops_chinese.txt', 'r', encoding='utf-8') as f:
stops = f.read().split('\n')
newtext2 = [text1 for text1 in newtext if text1 not in stops]
8. 输出词频最大TOP20,把结果存放到文件里。
for i in range(0,20):
print(tesort[i])
pd.DataFrame(tesort).to_csv('ludingji.csv', encoding='utf-8')
9. 生成词云。
txt = open('ludingji.csv','r',encoding='utf-8').read()
ludingjilist = jieba.lcut(txt)
wl_spl = "".join(ludingjilist)
mywc = WordCloud().generate(wl_spl)
plt.imshow(mywc)
plt.axis("off")
plt.show()
10.代码
import pandas as pd
from wordcloud import WordCloud
import jieba
import matplotlib.pyplot as plt
# 读取小说
f = open(r'C:\Users\Shinelon\Desktop\python 3.22\ludingji.txt', 'r', encoding='utf8')
text = f.read();
f.close();
# 加入所分析对象的专业词汇
with open(r'C:\Users\Shinelon\Desktop\python 3.22\金庸小说.txt', 'r', encoding='utf-8') as f:
jinyong = f.read().split('\n')
jieba.load_userdict(jinyong)
newtext = jieba.lcut(text)
# 排除语法型词汇,代词、冠词、连词等停用词
with open(r'C:\Users\Shinelon\Desktop\python 3.22\stops_chinese.txt', 'r', encoding='utf-8') as f:
stops = f.read().split('\n')
newtext2 = [text1 for text1 in newtext if text1 not in stops]
# 对词语进行出现次数统计
te = {};
for w in newtext:
if len(w) == 1:
continue
else:
te[w] = te.get(w, 0) + 1
# 次数排序
tesort = list(te.items())
tesort.sort(key=lambda x: x[1], reverse=True)
# 输出次数前TOP20的词语
for i in range(0,20):
print(tesort[i])
# 存储结果
pd.DataFrame(tesort).to_csv('ludingji.csv', encoding='utf-8')
# 读取生成词云
txt = open('ludingji.csv','r',encoding='utf-8').read()
ludingjilist = jieba.lcut(txt)
wl_spl = "".join(ludingjilist)
mywc = WordCloud().generate(wl_spl)
plt.imshow(mywc)
plt.axis("off")
plt.show()