理解人脸图像特征提取的各种方法(包括HoG、Dlib和卷积神经网络特征)

文章目录

        • 1、HoG
        • 2、Dlib
        • 3、卷积神经网络
        • 4、参考文献

1、HoG

①HOG特征:
方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主。

②主要思想:
在一副图像中,局部目标的表象和形状(appearance and shape)能够被梯度或边缘的方向密度分布很好地描述。(本质:梯度的统计信息,而梯度主要存在于边缘的地方)。

③具体的实现方法是:
首先将图像分成小的连通区域,我们把它叫细胞单元。然后采集细胞单元中各像素点的梯度的或边缘的方向直方图。最后把这些直方图组合起来就可以构成特征描述器。

④优点:
与其他的特征描述方法相比,HOG有很多优点。首先,由于HOG是在图像的局部方格单元上操作,所以它对图像几何的和光学的形变都能保持很好的不变性,这两种形变只会出现在更大的空间领域上。其次,在粗的空域抽样、精细的方向抽样以及较强的局部光学归一化等条件下,只要行人大体上能够保持直立的姿势,可以容许行人有一些细微的肢体动作,这些细微的动作可以被忽略而不影响检测效果。因此HOG特征是特别适合于做图像中的人体检测的。

⑤HOG特征提取算法的实现过程:
a. 灰度化;
b. 采用Gamma校正法对输入图像进行颜色空间的标准化(归一化);目的是调节图像的对比度,降低图像局部的阴影和光照变化所造成的影响,同时可以抑制噪音的干扰;
c. 计算图像每个像素的梯度(包括大小和方向);主要是为了捕获轮廓信息,同时进一步弱化光照的干扰。
d. 将图像划分成小cells(例如6x6像素/cell);
e. 统计每个cell的梯度直方图(不同梯度的个数),即可形成每个cell的descriptor;
f. 将每几个cell组成一个block(例如3x3个cell/block),一个block内所有cell的特征descriptor串联起来便得到该block的HOG特征descriptor。
g. 将图像image内的所有block的HOG特征descriptor串联起来就可以得到该image(你要检测的目标)的HOG特征descriptor了。这个就是最终的可供分类使用的特征向量了。

2、Dlib

人脸识别分为人脸检测和识别两个阶段,人脸检测会找到人脸区域的矩形窗口,识别则通过ResNet返回人脸特征向量,并进行匹配。
①人脸检测阶段。人脸检测算法需要用大小位置不同的窗口在图像中进行滑动,然后判断窗口中是否存在人脸。dlib中使用的是HOG(histogram of oriented gradient)+回归树的方法,使用dlib训练好的模型进行检测效果比较好。dlib也使用了卷积神经网络来进行人脸检测,效果好于HOG的集成学习方法,不过需要使用GPU加速,不然程序会很卡,一张图片可能几秒甚至几十秒。
②识别阶段。识别也就是我们常说的“分类”,摄像头采集到这个人脸时,让机器判断是张三还是其他人。分类分为两个部分:特征向量抽取和距离匹配。
③人脸识别分类过程:
理解人脸图像特征提取的各种方法(包括HoG、Dlib和卷积神经网络特征)_第1张图片
④获取人脸特征向量过程:
理解人脸图像特征提取的各种方法(包括HoG、Dlib和卷积神经网络特征)_第2张图片

3、卷积神经网络

卷积神经网络是近年发展起来的,并引起广泛重视的一种高效识别方法,20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络(Convolutional Neural Networks-简称CNN)。现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。 K.Fukushima在1980年提出的新识别机是卷积神经网络的第一个实现网络。随后,更多的科研工作者对该网络进行了改进。其中,具有代表性的研究成果是Alexander和Taylor提出的“改进认知机”,该方法综合了各种改进方法的优点并避免了耗时的误差反向传播。
一般的,CNN的基本结构包括两层,其一为特征提取层,每个神经元的输入与前一层的局部接受域相连,并提取该局部的特征。一旦该局部特征被提取后,它与其它特征间的位置关系也随之确定下来;其二是特征映射层,网络的每个计算层由多个特征映射组成,每个特征映射是一个平面,平面上所有神经元的权值相等。特征映射结构采用影响函数核小的sigmoid函数作为卷积网络的激活函数,使得特征映射具有位移不变性。此外,由于一个映射面上的神经元共享权值,因而减少了网络自由参数的个数。卷积神经网络中的每一个卷积层都紧跟着一个用来求局部平均与二次提取的计算层,这种特有的两次特征提取结构减小了特征分辨率。
CNN主要用来识别位移、缩放及其他形式扭曲不变性的二维图形,该部分功能主要由池化层实现。由于CNN的特征检测层通过训练数据进行学习,所以在使用CNN时,避免了显式的特征抽取,而隐式地从训练数据中进行学习;再者由于同一特征映射面上的神经元权值相同,所以网络可以并行学习,这也是卷积网络相对于神经元彼此相连网络的一大优势。卷积神经网络以其局部权值共享的特殊结构在语音识别和图像处理方面有着独特的优越性,其布局更接近于实际的生物神经网络,权值共享降低了网络的复杂性,特别是多维输入向量的图像可以直接输入网络这一特点避免了特征提取和分类过程中数据重建的复杂度。

4、参考文献

①https://blog.csdn.net/lien0906/article/details/39023271
②https://www.cnblogs.com/supersayajin/p/8489435.html
③https://www.cnblogs.com/wj-1314/p/9754072.html

你可能感兴趣的:(理解人脸图像特征提取的各种方法(包括HoG、Dlib和卷积神经网络特征))