- 30、法律案例的关联检索:提升法律实践的信息处理能力
android
法律案例关联检索信息处理
法律案例的关联检索:提升法律实践的信息处理能力1.引言在当今信息爆炸的时代,法律从业者面临着前所未有的挑战。大量的法律案例、法规和判例使得信息检索变得复杂而耗时。为了提高工作效率和决策质量,法律从业者迫切需要一种高效的工具来发现和检索相互关联的法律案例。本文将探讨如何通过先进的信息检索技术和算法来实现这一点。2.关联模型关联模型是法律案例关联检索的核心。为了确定案例之间的关联性,通常采用以下几种模
- RAG系列:提升RAG检索力:三大Query变形术,助你玩转AI知识检索!
数智前沿
数字化转型人工智能RAG
之前的帖子大多在优化向量化的过程,让文本内容分块更合理和更精准,本篇重点介绍使用RAG时如何优化提示词,以提高查询结果的精准度!一、RAG的“灵魂拷问”:你真的会提问吗?在AI时代,信息检索的效率和质量,80%取决于你“怎么问”。RAG系统的本质,就是“你问得好,我答得妙”。但现实往往是——用户提问:“AI会抢我饭碗吗?”检索系统:一脸懵逼,给你扔来一堆“AI是什么”“就业趋势”……用户:???这
- Python爬虫实战:研究MarkupSafe库相关技术
ylfhpy
爬虫项目实战python爬虫开发语言MarkupSafe
1.引言1.1研究背景与意义随着互联网数据量的爆炸式增长,网页内容自动提取与分析技术在信息检索、舆情监控、数据挖掘等领域的需求日益凸显。网络爬虫作为获取网页内容的核心工具,能够自动化采集互联网信息。然而,直接渲染爬取的网页内容存在安全隐患,特别是跨站脚本攻击(XSS)风险。攻击者可能通过注入恶意脚本窃取用户信息或破坏网站功能。MarkupSafe作为Python的安全字符串处理库,能够有效处理不可
- 企业级RAG系统架构设计与实现指南(Java技术栈)
在未来等你
大模型应用开发AI技术编程JavaSpring
企业级RAG系统架构设计与实现指南(Java技术栈)开篇:RAG系统的基本概念与企业应用价值在当今快速发展的AI技术背景下,检索增强生成(Retrieval-AugmentedGeneration,RAG)已成为构建智能问答、知识库管理、个性化推荐等应用的核心技术之一。RAG系统通过结合信息检索与自然语言生成(NLG),能够有效提升模型对特定领域数据的适应能力,避免传统大模型在训练数据不足或数据更
- 信息检索简介——文本处理、搜索引擎、数据挖掘、机器学习、推荐系统等
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介2005年8月17日至9月3日在美国加利福尼亚州伯克莱纳举行了SIGIR国际会议(中文全称“计算机信息retrieval国际会议”),这是信息检索领域的顶级会议之一。该会议由ACM主办,主题涵盖了包括文本处理、搜索引擎、数据挖掘、机器学习、推荐系统等多个热门方向。此次会议是第一次将信息检索作为一个学科,并取得重大突破。本文试图对SIGIR进行一个完整的介绍,阐述
- 爆改RAG检索力:三大Query变形术,助你玩转AI知识检索!
许泽宇的技术分享
大模型AIGC搜索引擎人工智能RAG
你以为RAG(Retrieval-AugmentedGeneration)就是“检索+生成”那么简单?那你可太低估AI界的“内卷”了!今天,咱们就来聊聊如何用三大Query变形术,把RAG的检索力拉满,助你在AI知识海洋里捞到最肥的鱼!一、RAG的“灵魂拷问”:你真的会提问吗?在AI时代,信息检索的效率和质量,80%取决于你“怎么问”。RAG系统的本质,就是“你问得好,我答得妙”。但现实往往是——
- 什么是 QueryGPT?智能查询工具如何重塑信息检索的未来?
镜舟科技
StarRocksQueryGPT数据查询数据分析多模态交互
从客户行为数据到供应链信息,从市场趋势到内部运营指标,这些数据蕴含着巨大的商业价值。然而,数据量的激增也带来了前所未有的检索挑战:如何在海量信息中快速定位所需数据?如何确保查询结果的准确性和时效性?据统计,75%的企业正受困于低效的查询工具,这已成为阻碍企业数字化转型的关键痛点。传统的数据查询方式主要依赖SQL语句或特定的查询语言,这要求用户具备专业的编程知识和对数据结构的深入理解。即使对于数据分
- RAG 调优指南:Spring AI Alibaba 模块化 RAG 原理与使用
ApacheDubbo
spring人工智能架构SpringAIRAG
>夏冬,SpringAIAlibabaContributorRAG简介什么是RAG(检索增强生成)RAG(RetrievalAugmentedGeneration,检索增强生成)是一种结合信息检索和文本生成的技术范式。核心设计理念RAG技术就像给AI装上了「实时百科大脑」,通过先查资料后回答的机制,让AI摆脱传统模型的"知识遗忘"困境。️四大核心步骤1.文档切割→建立智能档案库核心任务:将海量文档
- Python爬虫实战:研究jieba相关技术
ylfhpy
爬虫项目实战python爬虫开发语言htmljieba分词
1.引言1.1研究背景与意义随着互联网技术的飞速发展,网络新闻已成为人们获取信息的主要渠道之一。每天产生的新闻文本数据量呈爆炸式增长,如何从海量文本中高效提取有价值的信息,成为信息科学领域的重要研究课题。文本分析技术通过对文本内容的结构化处理和语义挖掘,能够揭示隐藏在文本中的主题、情感和趋势,为舆情监测、信息检索、内容推荐等应用提供技术支持。1.2研究目标与方法本研究旨在构建一个完整的新闻文本分析
- 多模态查询技术:让搜索更智能、更精准
搜索引擎技术
ai
多模态查询技术:让搜索更智能、更精准关键词:多模态查询、跨模态搜索、语义理解、向量检索、深度学习、信息检索、人工智能摘要:本文深入探讨多模态查询技术如何通过整合文本、图像、音频等多种数据形式,实现更智能、更精准的搜索体验。我们将从基础概念出发,逐步解析技术原理,并通过实际案例展示其应用价值,最后展望未来发展趋势。背景介绍目的和范围本文旨在全面介绍多模态查询技术,包括其核心概念、工作原理、实现方法和
- 搜索领域个性化排序:如何利用生成式AI提升效果?
搜索引擎技术
人工智能ai
搜索个性化排序的生成式AI增强:从理论框架到实践落地的系统解析关键词生成式AI、个性化排序、搜索系统、用户意图建模、多模态信息融合、排序优化、智能检索摘要本报告系统解析如何通过生成式AI技术提升搜索领域的个性化排序效果。从理论框架出发,结合信息检索第一性原理与生成式模型的核心优势,构建"用户-查询-文档"三元组的深度关联模型;通过层次化架构设计,覆盖用户建模、查询理解、文档表示到排序决策的全流程;
- Spring Boot + LangChain 构建 RAG 应用
程序员丸子
langchainAI大模型语言模型自然语言处理人工智能大语言模型RAG
使用LangChain构建RAG应用程序什么是RAG?检索增强生成(Retrieval-AugmentedGeneration,RAG)是一种结合了检索和生成两种关键技术的机器学习方法。这种方法在自然语言处理任务中特别有效,例如对话系统和问答系统。RAG的关键组件检索:•RAG首先从大型数据集或知识库中检索与用户查询相关的文档或数据。•通常使用信息检索技术,如向量搜索或关键词匹配。生成:•在检索到
- 【Elasticsearch】TF-IDF 和 BM25相似性算法
risc123456
Elasticsearchelasticsearch
在Elasticsearch中,TF-IDF和BM25是两种常用的文本相似性评分算法,但它们的实现和应用场景有所不同。以下是对这两种算法的对比以及在Elasticsearch中的使用情况:TF-IDF-定义与原理:TF-IDF是一种经典的信息检索算法,用于评估一个词语对于一个文件集或语料库中某份文件的重要程度。它由两部分组成:-TF(TermFrequency):词频,即词语在文档中出现的次数。-
- LangChain、RAG、Agent是什么
ZhangJiQun&MXP
2021AIpython2024大模型以及算力教学langchain语言模型人工智能算法自然语言处理
LangChain、RAG、Agent是什么在本地部署基于DeepSeek-R1模型的商用级知识库系统,旨在帮助开发者搭建智能知识库,提升企业智能化水平。背景与技术概述:随着大语言模型和RAG技术发展,AI知识库广泛应用于各行业,但传统信息管理系统存在问题,大模型也有“幻觉”现象。RAG技术将信息检索与生成模型结合,能缓解“幻觉”,而Agent智能体和LangChain框架可满足复杂业务需求。本地
- Coggle数据科学 | Kaggle赛题解析:识别数据引用与分类
双木的木
深度学习拓展阅读分类数据挖掘人工智能计算机视觉promptpython算法
本文来源公众号“Coggle数据科学”,仅用于学术分享,侵权删,干货满满。原文链接:Kaggle赛题解析:识别数据引用与分类赛题名称:MakeDataCount-FindingDataReferences赛题类型:自然语言处理、信息检索赛题任务:从科学论文的全文中提取所有被引用的研究数据,并根据上下文将其分类为初级引用(Primary)或次级引用(Secondary)。https://www.ka
- 大模型RAG高阶面试指南:第一章:RAG绪论
强化学习曾小健3
大模型RAG高阶面试指南人工智能深度学习
第一章:RAG绪论1.1RAG的定义、背景与核心思想检索增强生成(RetrievalAugmentedGeneration,简称RAG)是一种结合了信息检索和文本生成的人工智能技术。它通过在生成过程中动态检索相关信息来增强大型语言模型的能力,从而提供更准确、更及时、更可靠的回答。RAG的核心思想是将"参数化知识"(存储在模型参数中的知识)与"非参数化知识"(存储在外部知识库中的知识)相结合,通过检
- 实现RAG融合以提升信息检索精准度
zbb258
javascriptpythonlangchain
在信息检索领域,如何从浩如烟海的信息中精准地获得答案是一个巨大的挑战。RAG(Retrieval-AugmentedGeneration)融合就是一种创新的解决方案。本文将介绍RAG融合的技术背景、核心原理,并提供多个代码片段,展示如何使用这一技术进行信息检索。技术背景介绍RAG融合结合了信息检索和生成式模型的优势。它可以通过生成多个查询,从而提高搜索结果的综合质量,并利用互惠排名融合方法对搜索结
- 自然语言处理分类
要奋斗呀
自然语言处理
NLP学习Nlp基本分类NLP领域的任务分为两个类别:第一类是人工智能NLP。包括词性标注,分词,语法解析,语言模型,信息检索,信息抽取,语义表示,文本分类。这些任务发展较为成熟,各种相关工作的主要目的是提高当前模型的性能。第二类是人工智障NLP。包括机器翻译,对话系统,问答系统。目前模型的性能尚不尽如人意,有些任务上甚至没有足够多的,真正有影响力的工作。一、文本分类--情感分类1.定义情感分类是
- Qwen3-Embedding-Reranker本地部署教程:8B 参数登顶 MTEB 多语言榜首,100 + 语言跨模态检索无压力!
算家计算
模型构建embeddingQwen3Qwen3-Reranker模型部署教程智能检索算家云镜像社区
一、简介Qwen3-Embedding与Qwen3-Reranker是阿里巴巴通义实验室于今年6月开源的双模型系列,专为文本表征、检索与排序任务设计。基于Qwen3基础模型构建,二者通过协同工作显著提升语义理解与信息检索效率,在多语言场景和工业部署中表现卓越。基于Qwen3系列的密集基础模型,提供了各种大小(0.6B、4B和8B)的全面文本嵌入和重新排序模型。该系列继承了其基础模型出色的多语言能力
- 如何使用EnsembleRetriever结合多个检索器的结果
weixin_43212959
windows人工智能microsoft
在信息检索领域,融合不同检索器的结果可以提升搜索结果的质量。EnsembleRetriever是一个支持将多个检索器的结果组合起来的工具。它通过复合互排名融合算法(ReciprocalRankFusion)重新排序各个检索器的结果,以实现更好的性能。技术背景介绍在搜索和信息检索中,"混合搜索"模式成为一种常见的做法。混合搜索通常结合稀疏检索器(如BM25)和密集检索器(如基于嵌入的相似性)。稀疏检
- 《阿里新神器MaskSearch问世:为何我们需要打破传统搜索代理训练的枷锁?》
来自于狂人
语言模型人工智能python
引言:当搜索遇到AI,一场看不见的革命正在发生"百度一下,你就知道"的时代已经成为过去。在今天这个信息爆炸的数字世界,我们需要的不是更多的信息,而是更精准、更智能、更懂人心的信息检索方式。阿里巴巴最近开源的MaskSearch技术,正在悄然改变着搜索代理(SearchAgent)训练的游戏规则。想象这样的场景:你正在寻找一款适合新手入门的单反相机,输入"最好的入门单反"后,传统的搜索引擎可能会给你
- 使用 LangChain 实现多用户文档检索
yunwu12777
langchain服务器数据库
在构建信息检索应用时,通常需要支持多个用户,并确保每个用户只能访问自己的数据。这篇文章将展示如何配置检索链的运行时属性,以限制可用文档,并提供一个使用Pinecone向量存储实现的示例。技术背景介绍在多用户环境中,每个用户的数据必须是隔离的。这意味着您的检索系统需要能够区分和隔离不同用户的数据。实现这一点的关键在于使用向量存储时能够区分不同用户的数据域。核心原理解析许多向量存储系统(如Pineco
- 使用Weaviate和LangChain实现RAG (检索增强生成)
在现代的AI应用中,RAG(检索增强生成)技术通过将生成模型与外部知识库结合,提供了一个强大的信息检索和处理方法。本次分享将会介绍如何使用Weaviate作为知识库,并结合LangChain实现一个RAG应用。技术背景介绍RAG技术通过结合生成式AI和检索系统,能够在大规模语料库中找到相关信息来增强生成模型的回答精确度。Weaviate是一个灵活且可扩展的向量数据库,非常适合用于RAG系统中的知识
- LLM OS 中的自然语言搜索引擎
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LLMOS中的自然语言搜索引擎关键词:大语言模型、操作系统、自然语言搜索、语义理解、信息检索、人工智能、用户交互文章目录LLMOS中的自然语言搜索引擎1.背景介绍2.核心概念与联系3.核心算法原理&具体操作步骤3.1算法原理概述3.2算法步骤详解3.3算法优缺点3.4算法应用领域4.数学模型和公式&详细讲解&举例说明4.1数学模型构建4.2公式推导过程4.3案例分析与讲解5.项目实践:代码实例和详
- RAG:2025年检索增强生成前沿技术完全指南
大模型之路
RAGrag检索增强生产llm
一、RAG技术的核心突破与行业影响在生成式人工智能爆发的今天,检索增强生成(Retrieval-AugmentedGeneration,RAG)正以其独特的技术架构,成为连接静态知识库与动态生成能力的桥梁。这项诞生于2020年的创新技术,通过将信息检索(Retrieval)与文本生成(Generation)解耦又融合的设计,突破了传统语言模型“幻觉”问题的桎梏,为构建可信、可控、可扩展的AI系统奠
- Python爬虫实战:研究Bleach库相关技术
ylfhpy
爬虫项目实战python爬虫php开发语言htmljavascript
一、引言1.1研究背景与意义随着互联网的快速发展,网络上的数据量呈爆炸式增长。网络爬虫作为一种自动获取网页内容的技术,能够高效地从互联网上收集所需信息,为数据分析、信息检索、舆情监测等应用提供基础。然而,爬取到的网页内容往往包含大量的HTML标签、JavaScript代码和其他潜在的安全风险,直接使用这些内容可能会导致XSS攻击、代码注入等安全问题。Bleach是Python中一个专门用于安全地处
- 基于bert预训练模型transformer架构的中文文本多标签分类的双向语义理解。
基于bert预训练模型transformer架构的中文文本多标签分类的双向语义理解。文章目录1.安装必要的库2.数据准备3.模型定义4.训练模型5.评估模型6.部署与应用概述:BERT多标签中文文本分类系统是一款先进的自然语言处理工具,专为中文文本分析和多标签分类设计。该系统利用BERT模型的强大能力,能够精确地对中文文本进行多维度的标签分类,广泛应用于内容管理、信息检索、情感分析等领域。主要特性
- GET和POST请求的区别
Qiuluo_ovo
java
我们在请求服务器资源的时候,会用不同的请求方式表示不同的场景。其中GET和POST是HTTP协议中最常用的两种请求方法,它们在设计理念和应用场景上有明显区别。GET请求:定义:HTTP协议中用于获取资源的请求方法,遵循"幂等性"原则(多次请求结果一致),参数通过URL明文传递。常见用例:信息检索与数据查询(关键词搜索,商品筛选)静态资源加载与缓存(加载网页图片)公开数据接口调用等(地理位置解析)P
- 深入解析 Qwen3-Embedding 和 Qwen3-Reranker:原理、应用与代码示例
从零开始学习人工智能
embedding
深入解析Qwen3-Embedding和Qwen3-Reranker:原理、应用与代码示例在当今数字化信息爆炸的时代,高效的信息检索与处理技术成为了众多领域的关键需求。文本嵌入(Embedding)和重排序(Reranking)技术在语义搜索、推荐系统、检索增强生成(RAG)等应用中发挥着基础性作用。然而,现有的方法在实现多语言的高保真度和任务适应性方面面临诸多挑战,特别是在需要对多种语言进行细致
- BM25检索与向量检索
BM25检索与向量检索是信息检索领域的两种核心技术,二者在技术原理、适用场景、优缺点等方面存在显著差异。以下从多个维度对两者进行对比分析:1.技术原理BM25检索BM25是一种基于词频(TF)和逆文档频率(IDF)的统计模型,属于稀疏检索方法。其核心思想是通过计算查询词在文档中的出现频率(TF)和查询词在整个文档集合中的稀有程度(IDF),结合文档长度归一化因子,对文档进行相关性评分。BM25公式
- Hadoop(一)
朱辉辉33
hadooplinux
今天在诺基亚第一天开始培训大数据,因为之前没接触过Linux,所以这次一起学了,任务量还是蛮大的。
首先下载安装了Xshell软件,然后公司给了账号密码连接上了河南郑州那边的服务器,接下来开始按照给的资料学习,全英文的,头也不讲解,说锻炼我们的学习能力,然后就开始跌跌撞撞的自学。这里写部分已经运行成功的代码吧.
在hdfs下,运行hadoop fs -mkdir /u
- maven An error occurred while filtering resources
blackproof
maven报错
转:http://stackoverflow.com/questions/18145774/eclipse-an-error-occurred-while-filtering-resources
maven报错:
maven An error occurred while filtering resources
Maven -> Update Proje
- jdk常用故障排查命令
daysinsun
jvm
linux下常见定位命令:
1、jps 输出Java进程
-q 只输出进程ID的名称,省略主类的名称;
-m 输出进程启动时传递给main函数的参数;
&nb
- java 位移运算与乘法运算
周凡杨
java位移运算乘法
对于 JAVA 编程中,适当的采用位移运算,会减少代码的运行时间,提高项目的运行效率。这个可以从一道面试题说起:
问题:
用最有效率的方法算出2 乘以8 等於几?”
答案:2 << 3
由此就引发了我的思考,为什么位移运算会比乘法运算更快呢?其实简单的想想,计算机的内存是用由 0 和 1 组成的二
- java中的枚举(enmu)
g21121
java
从jdk1.5开始,java增加了enum(枚举)这个类型,但是大家在平时运用中还是比较少用到枚举的,而且很多人和我一样对枚举一知半解,下面就跟大家一起学习下enmu枚举。先看一个最简单的枚举类型,一个返回类型的枚举:
public enum ResultType {
/**
* 成功
*/
SUCCESS,
/**
* 失败
*/
FAIL,
- MQ初级学习
510888780
activemq
1.下载ActiveMQ
去官方网站下载:http://activemq.apache.org/
2.运行ActiveMQ
解压缩apache-activemq-5.9.0-bin.zip到C盘,然后双击apache-activemq-5.9.0-\bin\activemq-admin.bat运行ActiveMQ程序。
启动ActiveMQ以后,登陆:http://localhos
- Spring_Transactional_Propagation
布衣凌宇
springtransactional
//事务传播属性
@Transactional(propagation=Propagation.REQUIRED)//如果有事务,那么加入事务,没有的话新创建一个
@Transactional(propagation=Propagation.NOT_SUPPORTED)//这个方法不开启事务
@Transactional(propagation=Propagation.REQUIREDS_N
- 我的spring学习笔记12-idref与ref的区别
aijuans
spring
idref用来将容器内其他bean的id传给<constructor-arg>/<property>元素,同时提供错误验证功能。例如:
<bean id ="theTargetBean" class="..." />
<bean id ="theClientBean" class=&quo
- Jqplot之折线图
antlove
jsjqueryWebtimeseriesjqplot
timeseriesChart.html
<script type="text/javascript" src="jslib/jquery.min.js"></script>
<script type="text/javascript" src="jslib/excanvas.min.js&
- JDBC中事务处理应用
百合不是茶
javaJDBC编程事务控制语句
解释事务的概念; 事务控制是sql语句中的核心之一;事务控制的作用就是保证数据的正常执行与异常之后可以恢复
事务常用命令:
Commit提交
- [转]ConcurrentHashMap Collections.synchronizedMap和Hashtable讨论
bijian1013
java多线程线程安全HashMap
在Java类库中出现的第一个关联的集合类是Hashtable,它是JDK1.0的一部分。 Hashtable提供了一种易于使用的、线程安全的、关联的map功能,这当然也是方便的。然而,线程安全性是凭代价换来的――Hashtable的所有方法都是同步的。此时,无竞争的同步会导致可观的性能代价。Hashtable的后继者HashMap是作为JDK1.2中的集合框架的一部分出现的,它通过提供一个不同步的
- ng-if与ng-show、ng-hide指令的区别和注意事项
bijian1013
JavaScriptAngularJS
angularJS中的ng-show、ng-hide、ng-if指令都可以用来控制dom元素的显示或隐藏。ng-show和ng-hide根据所给表达式的值来显示或隐藏HTML元素。当赋值给ng-show指令的值为false时元素会被隐藏,值为true时元素会显示。ng-hide功能类似,使用方式相反。元素的显示或
- 【持久化框架MyBatis3七】MyBatis3定义typeHandler
bit1129
TypeHandler
什么是typeHandler?
typeHandler用于将某个类型的数据映射到表的某一列上,以完成MyBatis列跟某个属性的映射
内置typeHandler
MyBatis内置了很多typeHandler,这写typeHandler通过org.apache.ibatis.type.TypeHandlerRegistry进行注册,比如对于日期型数据的typeHandler,
- 上传下载文件rz,sz命令
bitcarter
linux命令rz
刚开始使用rz上传和sz下载命令:
因为我们是通过secureCRT终端工具进行使用的所以会有上传下载这样的需求:
我遇到的问题:
sz下载A文件10M左右,没有问题
但是将这个文件A再传到另一天服务器上时就出现传不上去,甚至出现乱码,死掉现象,具体问题
解决方法:
上传命令改为;rz -ybe
下载命令改为:sz -be filename
如果还是有问题:
那就是文
- 通过ngx-lua来统计nginx上的虚拟主机性能数据
ronin47
ngx-lua 统计 解禁ip
介绍
以前我们为nginx做统计,都是通过对日志的分析来完成.比较麻烦,现在基于ngx_lua插件,开发了实时统计站点状态的脚本,解放生产力.项目主页: https://github.com/skyeydemon/ngx-lua-stats 功能
支持分不同虚拟主机统计, 同一个虚拟主机下可以分不同的location统计.
可以统计与query-times request-time
- java-68-把数组排成最小的数。一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的。例如输入数组{32, 321},则输出32132
bylijinnan
java
import java.util.Arrays;
import java.util.Comparator;
public class MinNumFromIntArray {
/**
* Q68输入一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的一个。
* 例如输入数组{32, 321},则输出这两个能排成的最小数字32132。请给出解决问题
- Oracle基本操作
ccii
Oracle SQL总结Oracle SQL语法Oracle基本操作Oracle SQL
一、表操作
1. 常用数据类型
NUMBER(p,s):可变长度的数字。p表示整数加小数的最大位数,s为最大小数位数。支持最大精度为38位
NVARCHAR2(size):变长字符串,最大长度为4000字节(以字符数为单位)
VARCHAR2(size):变长字符串,最大长度为4000字节(以字节数为单位)
CHAR(size):定长字符串,最大长度为2000字节,最小为1字节,默认
- [强人工智能]实现强人工智能的路线图
comsci
人工智能
1:创建一个用于记录拓扑网络连接的矩阵数据表
2:自动构造或者人工复制一个包含10万个连接(1000*1000)的流程图
3:将这个流程图导入到矩阵数据表中
4:在矩阵的每个有意义的节点中嵌入一段简单的
- 给Tomcat,Apache配置gzip压缩(HTTP压缩)功能
cwqcwqmax9
apache
背景:
HTTP 压缩可以大大提高浏览网站的速度,它的原理是,在客户端请求网页后,从服务器端将网页文件压缩,再下载到客户端,由客户端的浏览器负责解压缩并浏览。相对于普通的浏览过程HTML ,CSS,Javascript , Text ,它可以节省40%左右的流量。更为重要的是,它可以对动态生成的,包括CGI、PHP , JSP , ASP , Servlet,SHTML等输出的网页也能进行压缩,
- SpringMVC and Struts2
dashuaifu
struts2springMVC
SpringMVC VS Struts2
1:
spring3开发效率高于struts
2:
spring3 mvc可以认为已经100%零配置
3:
struts2是类级别的拦截, 一个类对应一个request上下文,
springmvc是方法级别的拦截,一个方法对应一个request上下文,而方法同时又跟一个url对应
所以说从架构本身上 spring3 mvc就容易实现r
- windows常用命令行命令
dcj3sjt126com
windowscmdcommand
在windows系统中,点击开始-运行,可以直接输入命令行,快速打开一些原本需要多次点击图标才能打开的界面,如常用的输入cmd打开dos命令行,输入taskmgr打开任务管理器。此处列出了网上搜集到的一些常用命令。winver 检查windows版本 wmimgmt.msc 打开windows管理体系结构(wmi) wupdmgr windows更新程序 wscrip
- 再看知名应用背后的第三方开源项目
dcj3sjt126com
ios
知名应用程序的设计和技术一直都是开发者需要学习的,同样这些应用所使用的开源框架也是不可忽视的一部分。此前《
iOS第三方开源库的吐槽和备忘》中作者ibireme列举了国内多款知名应用所使用的开源框架,并对其中一些框架进行了分析,同样国外开发者
@iOSCowboy也在博客中给我们列出了国外多款知名应用使用的开源框架。另外txx's blog中详细介绍了
Facebook Paper使用的第三
- Objective-c单例模式的正确写法
jsntghf
单例iosiPhone
一般情况下,可能我们写的单例模式是这样的:
#import <Foundation/Foundation.h>
@interface Downloader : NSObject
+ (instancetype)sharedDownloader;
@end
#import "Downloader.h"
@implementation
- jquery easyui datagrid 加载成功,选中某一行
hae
jqueryeasyuidatagrid数据加载
1.首先你需要设置datagrid的onLoadSuccess
$(
'#dg'
).datagrid({onLoadSuccess :
function
(data){
$(
'#dg'
).datagrid(
'selectRow'
,3);
}});
2.onL
- jQuery用户数字打分评价效果
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/5.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>jQuery用户数字打分评分代码 - HoverTree</
- mybatis的paramType
kerryg
DAOsql
MyBatis传多个参数:
1、采用#{0},#{1}获得参数:
Dao层函数方法:
public User selectUser(String name,String area);
对应的Mapper.xml
<select id="selectUser" result
- centos 7安装mysql5.5
MrLee23
centos
首先centos7 已经不支持mysql,因为收费了你懂得,所以内部集成了mariadb,而安装mysql的话会和mariadb的文件冲突,所以需要先卸载掉mariadb,以下为卸载mariadb,安装mysql的步骤。
#列出所有被安装的rpm package rpm -qa | grep mariadb
#卸载
rpm -e mariadb-libs-5.
- 利用thrift来实现消息群发
qifeifei
thrift
Thrift项目一般用来做内部项目接偶用的,还有能跨不同语言的功能,非常方便,一般前端系统和后台server线上都是3个节点,然后前端通过获取client来访问后台server,那么如果是多太server,就是有一个负载均衡的方法,然后最后访问其中一个节点。那么换个思路,能不能发送给所有节点的server呢,如果能就
- 实现一个sizeof获取Java对象大小
teasp
javaHotSpot内存对象大小sizeof
由于Java的设计者不想让程序员管理和了解内存的使用,我们想要知道一个对象在内存中的大小变得比较困难了。本文提供了可以获取对象的大小的方法,但是由于各个虚拟机在内存使用上可能存在不同,因此该方法不能在各虚拟机上都适用,而是仅在hotspot 32位虚拟机上,或者其它内存管理方式与hotspot 32位虚拟机相同的虚拟机上 适用。
- SVN错误及处理
xiangqian0505
SVN提交文件时服务器强行关闭
在SVN服务控制台打开资源库“SVN无法读取current” ---摘自网络 写道 SVN无法读取current修复方法 Can't read file : End of file found
文件:repository/db/txn_current、repository/db/current
其中current记录当前最新版本号,txn_current记录版本库中版本