之前翻译了一篇博文R中的线性混合模型介绍(翻译博客), 但是里面的示例代码显示不友好, 今天重新整理.
oats数据, 这是一个燕麦的裂区试验数据, 主区是品种, 裂区是施肥N, 重复是B区组, 观测值是产量Y
The yield of oats from a split-plot field trial using three varieties and four levels of manurial treatment. The experiment was laid out in 6 blocks of 3 main plots, each split into 4 sub-plots. The varieties were applied to the main plots and the manurial treatments to the sub-plots.
library(MASS)
data(oats)
head(oats)
数据预览:
B V N Y
1 I Victory 0.0cwt 111
2 I Victory 0.2cwt 130
3 I Victory 0.4cwt 157
4 I Victory 0.6cwt 174
5 I Golden.rain 0.0cwt 117
6 I Golden.rain 0.2cwt 114
因为这个数据中, V即表示品种, 又表示主区, 这里我们新建两个变量, 分别代表主区和裂区, wholeplot和subplot
oats$mainplot = oats$V
oats$subplot = oats$N
head(oats)
转化后的数据为:
> head(oats)
B V N Y mainplot subplot
1 I Victory 0.0cwt 111 Victory 0.0cwt
2 I Victory 0.2cwt 130 Victory 0.2cwt
3 I Victory 0.4cwt 157 Victory 0.4cwt
4 I Victory 0.6cwt 174 Victory 0.6cwt
5 I Golden.rain 0.0cwt 117 Golden.rain 0.0cwt
6 I Golden.rain 0.2cwt 114 Golden.rain 0.2cwt
数据是裂区试验设计, 所以如果放在混合线性模型中:
特点:
这是一个比较成熟的R包,是R语言安装时默认的包,它除了可以分析分层的线性混合模型,也可以处理非线性模型。在优势方面,个人认为它可以处理相对复杂的线性和非线性模型,可以定义方差协方差结构,可以在广义线性模型中定义几种分布函数和连接函数。
它的短板:
1、随机效应的定义过于呆板
2、数据量大时速度很慢
3、不能处理系谱数据
4、不能处理多变量数据。
代码:
library(nlme)
m1.nlme = lme(Y ~ V*N,random = ~ 1|B/mainplot,data = oats)
anova(m1.nlme)
结果:
> anova(m1.nlme)
numDF denDF F-value p-value
(Intercept) 1 45 245.14333 <.0001
V 2 10 1.48534 0.2724
N 3 45 37.68561 <.0001
V:N 6 45 0.30282 0.9322
特点:
lme4包是由Douglas Bates开发,他也是nlme包的作者之一,相对于nlme包而言,它的运行速度快一点,对于随机效应的结构也可以更复杂一点,但是它的缺点也和nlme一样:
1、不能处理协方差和相关系数结构
2、它可以与构建系数的包连接,比如mmpedigree包,但是结合比较脆弱。
3、不能处理多性状数据
library(lme4)
m1.lme4 = lmer(Y ~ V*N + (1|B/mainplot), data = oats)
anova(m1.lme4)
结果没有给出P值, 可以自己计算.
> anova(m1.lme4)
Analysis of Variance Table
Df Sum Sq Mean Sq F value
V 2 526.1 263.0 1.4853
N 3 20020.5 6673.5 37.6856
V:N 6 321.8 53.6 0.3028
这是商业软件, 不过非常友好.
特点:
library(asreml)
m1.asreml = asreml(Y ~ V*N, random = ~ B/mainplot, data=oats)
wald(m1.asreml,denDF = "default")
结果:
$`Wald`
Df denDF F.inc Pr
(Intercept) 1 5 245.1000 1.931825e-05
V 2 10 1.4850 2.723869e-01
N 3 45 37.6900 2.457710e-12
V:N 6 45 0.3028 9.321988e-01
MCMCglmm是基于贝叶斯的包, 也可以做混合线性模型分析:
我们看一下它的用法:
MCMCglmm(fixed, random=NULL, rcov=~units, family=“gaussian”, mev=NULL,
data,start=NULL, prior=NULL, tune=NULL, pedigree=NULL, nodes=“ALL”,
scale=TRUE, nitt=13000, thin=10, burnin=3000, pr=FALSE,
pl=FALSE, verbose=TRUE, DIC=TRUE, singular.ok=FALSE, saveX=TRUE,
saveZ=TRUE, saveXL=TRUE, slice=FALSE, ginverse=NULL, trunc=FALSE)
语法和asreml-R非常像, 这里我们将代码写为:
library(MCMCglmm)
m1.MCMC = MCMCglmm(Y ~ V*N, random = ~ B + B:mainplot, data=oats)
summary(m1.MCMC)
结果是对每个水平进行了显著性检验:
Location effects: Y ~ V * N
post.mean l-95% CI u-95% CI eff.samp pMCMC
(Intercept) 80.4332 59.5412 100.8704 1151 0.002 **
VMarvellous 6.0009 -16.1558 28.3933 1000 0.586
VVictory -8.9212 -29.6295 13.2659 1000 0.426
N0.2cwt 18.0450 1.8383 34.5909 1000 0.030 *
N0.4cwt 34.3391 18.9617 49.2152 1000 <0.001 ***
N0.6cwt 44.4065 29.3491 61.0137 1000 <0.001 ***
VMarvellous:N0.2cwt 4.4074 -18.0155 26.1201 1000 0.676
VVictory:N0.2cwt 0.5882 -20.4920 24.0181 1123 0.982
VMarvellous:N0.4cwt -3.6338 -25.6545 17.3987 1827 0.732
VVictory:N0.4cwt 5.1730 -17.3163 26.5974 1121 0.632
VMarvellous:N0.6cwt -3.9847 -26.7962 17.7244 1193 0.708
VVictory:N0.6cwt 2.8611 -19.6938 25.8976 1000 0.788
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
m1.aov = aov(Y~V*N + Error(B/mainplot), data=oats)
summary(m1.aov)
结果:
> summary(m1.aov)
Error: B
Df Sum Sq Mean Sq F value Pr(>F)
Residuals 5 15875 3175
Error: B:mainplot
Df Sum Sq Mean Sq F value Pr(>F)
V 2 1786 893.2 1.485 0.272
Residuals 10 6013 601.3
Error: Within
Df Sum Sq Mean Sq F value Pr(>F)
N 3 20020 6673 37.686 2.46e-12 ***
V:N 6 322 54 0.303 0.932
Residuals 45 7969 177
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
PS, 那个MCMCglmm应该有一种方差形式的输出方法, 回头补充完整, FLAG!!!
# install.packages("MASS")
library(MASS)
data(oats)
head(oats)
oats$mainplot = oats$V
oats$subplot = oats$N
head(oats)
# nlme
library(nlme)
m1.nlme = lme(Y ~ V*N,random = ~ 1|B/mainplot,data = oats)
anova(m1.nlme)
# lme4
library(lme4)
m1.lme4 = lmer(Y ~ V*N + (1|B/mainplot), data = oats)
anova(m1.lme4)
# asreml
library(asreml)
m1.asreml = asreml(Y ~ V*N, random = ~ B/mainplot, data=oats)
wald(m1.asreml,denDF = "default")
# MCMCglmm
library(MCMCglmm)
m1.MCMC = MCMCglmm(Y ~ V*N, random = ~ B + B:mainplot, data=oats)
summary(m1.MCMC)
# aov
m1.aov = aov(Y~V*N + Error(B/mainplot), data=oats)
summary(m1.aov)