基于Python的人口热力大数据初探

1、数据来源:腾讯大数据平台/宜出行大数据

2、爬取方式: 获取基础行政区基础数据,根据范围经纬度进行数据爬取。

3、爬取过程:获取腾讯大数据请求地址,根据相关参数进行数据解析。

核心代码:

def get_TecentData(count=4,rank=0): #先默认为从rank从0开始
    url='https://xingyun.map.qq.com/api/getXingyunPoints' #来源星云平台
    locs=''
    paload={'count':count,'rank':rank}
    response=requests.post(url,data=json.dumps(paload))
    datas=response.text
    dictdatas=json.loads(datas)#dumps是将dict转化成str格式,loads是将str转化成dict
    time=dictdatas['time'] #有了dict格式就可以根据关键字提取数据了,先提取时间
    print(time)
    locs=dictdatas['locs'] #再提取locs(这个需要进一步分析提取出经纬度和定位次数)
    locss=locs.split(',')
    temp=[] #搞一个容器
    for i in range(int(len(locss)/3)):
        lat = locss[0 + 3 * i]  # 得到纬度
        lon = locss[1 + 3 * i]  # 得到经度
        count = locss[2 + 3 * i]
        if(2521and 11768#永春坐标范围
            temp.append([time,int(lat)/100,int(lon)/100,count]) #容器追加四个字段的数据:时间,纬度,经度和定位次数
    result=pd.DataFrame(temp) #用到神器pandas,真好用
    result.dropna() #去掉脏数据,相当于数据过滤了
    if result.columns.__len__()>0:
        result.columns = ['time', 'lat', 'lon','count']
    result.to_csv('YCData.txt',mode='a',index = False)

4、爬取结果处理分析: 

      根据时间段,爬取对应时间的人口热点数据,包括经纬度、人口数量、时间等信息,结果以csv表达。

 基于Python的人口热力大数据初探_第1张图片

 

 图2.1 爬取结果表达

5、分析过程:

      数据导入Arcmap,添加为点,根据不同时间段进行数据梳理,转为SHP点数据,采用核密度分析、反距离权重插值、线条函数插值等进行分析,

对分析结果进行可视化渲染,得到不同时间的区域人口热力密度图。

可视化成果:

基于Python的人口热力大数据初探_第2张图片

 

 图2.2 上午10点人口热力

 基于Python的人口热力大数据初探_第3张图片

 

 图2.3 下午2点人口热力

 基于Python的人口热力大数据初探_第4张图片

 

 图2.4 下午5点人口热力

总结,本次实战主要是针对实地调研、网上、其他渠道无法直接获取数据时,通过爬虫技术,对相关大数据平台进行数据爬取,

主要是爬取了大数据平台的实时人口热力信息和POI信息,后期可以根据需求丰富爬取内容,对县城城镇化补短板强弱项的相关信息进行爬取分析。

原创版权声明,转载请说明出处,谢谢。

你可能感兴趣的:(基于Python的人口热力大数据初探)