PCL处理Intel RealSense2读取的点云

环境配置以及项目CMakeLists.txt文件参见

安装 PCL + OpenGL + GLFW

https://blog.csdn.net/u012180635/article/details/85232036

安装 RealSense2 + CMake + OpenCV

https://blog.csdn.net/u012180635/article/details/82143340

 

源码来自RealSense源码包 librealsense/wrappers/pcl/pcl/rs-pcl.cpp

rs-pcl.cpp内容如下:

// License: Apache 2.0. See LICENSE file in root directory.
// Copyright(c) 2015-2017 Intel Corporation. All Rights Reserved.

#include  // Include RealSense Cross Platform API
//#include "example.hpp" // Include short list of convenience functions for rendering
#include 
#include 
#include 

// Struct for managing rotation of pointcloud view
struct state {
    state() : yaw(0.0), pitch(0.0), last_x(0.0), last_y(0.0),
        ml(false), offset_x(0.0f), offset_y(0.0f) {}
    double yaw, pitch, last_x, last_y; bool ml; float offset_x, offset_y; 
};

using pcl_ptr = pcl::PointCloud::Ptr;

// Helper functions
void register_glfw_callbacks(window& app, state& app_state);
void draw_pointcloud(window& app, state& app_state, const std::vector& points);

pcl_ptr points_to_pcl(const rs2::points& points)
{
    pcl_ptr cloud(new pcl::PointCloud);

    auto sp = points.get_profile().as();
    cloud->width = sp.width();
    cloud->height = sp.height();
    cloud->is_dense = false;
    cloud->points.resize(points.size());
    auto ptr = points.get_vertices();
    for (auto& p : cloud->points)
    {
        p.x = ptr->x;
        p.y = ptr->y;
        p.z = ptr->z;
        ptr++;
    }

    return cloud;
}

float3 colors[] { { 0.8f, 0.1f, 0.3f }, 
                  { 0.1f, 0.9f, 0.5f },
                };

int main(int argc, char * argv[]) try
{
    // Create a simple OpenGL window for rendering:
    window app(1280, 720, "RealSense PCL Pointcloud Example");
    // Construct an object to manage view state
    state app_state;
    // register callbacks to allow manipulation of the pointcloud
    register_glfw_callbacks(app, app_state);

    // Declare pointcloud object, for calculating pointclouds and texture mappings
    rs2::pointcloud pc;
    // We want the points object to be persistent so we can display the last cloud when a frame drops
    rs2::points points;

    // Declare RealSense pipeline, encapsulating the actual device and sensors
    rs2::pipeline pipe;
    // Start streaming with default recommended configuration
    pipe.start();

    // Wait for the next set of frames from the camera
    auto frames = pipe.wait_for_frames();

    auto depth = frames.get_depth_frame();

    // Generate the pointcloud and texture mappings
    points = pc.calculate(depth);

    auto pcl_points = points_to_pcl(points);

    pcl_ptr cloud_filtered(new pcl::PointCloud);
    pcl::PassThrough pass;
    pass.setInputCloud(pcl_points);
    pass.setFilterFieldName("z");
    pass.setFilterLimits(0.0, 1.0);
    pass.filter(*cloud_filtered);

    std::vector layers;
    layers.push_back(pcl_points);
    layers.push_back(cloud_filtered);

    while (app) // Application still alive?
    {
        draw_pointcloud(app, app_state, layers);
    }

    return EXIT_SUCCESS;
}
catch (const rs2::error & e)
{
    std::cerr << "RealSense error calling " << e.get_failed_function() << "(" << e.get_failed_args() << "):\n    " << e.what() << std::endl;
    return EXIT_FAILURE;
}
catch (const std::exception & e)
{
    std::cerr << e.what() << std::endl;
    return EXIT_FAILURE;
}

// Registers the state variable and callbacks to allow mouse control of the pointcloud
void register_glfw_callbacks(window& app, state& app_state)
{
    app.on_left_mouse = [&](bool pressed)
    {
        app_state.ml = pressed;
    };

    app.on_mouse_scroll = [&](double xoffset, double yoffset)
    {
        app_state.offset_x += static_cast(xoffset);
        app_state.offset_y += static_cast(yoffset);
    };

    app.on_mouse_move = [&](double x, double y)
    {
        if (app_state.ml)
        {
            app_state.yaw -= (x - app_state.last_x);
            app_state.yaw = std::max(app_state.yaw, -120.0);
            app_state.yaw = std::min(app_state.yaw, +120.0);
            app_state.pitch += (y - app_state.last_y);
            app_state.pitch = std::max(app_state.pitch, -80.0);
            app_state.pitch = std::min(app_state.pitch, +80.0);
        }
        app_state.last_x = x;
        app_state.last_y = y;
    };

    app.on_key_release = [&](int key)
    {
        if (key == 32) // Escape
        {
            app_state.yaw = app_state.pitch = 0; app_state.offset_x = app_state.offset_y = 0.0;
        }
    };
}

// Handles all the OpenGL calls needed to display the point cloud
void draw_pointcloud(window& app, state& app_state, const std::vector& points)
{
    // OpenGL commands that prep screen for the pointcloud
    glPopMatrix();
    glPushAttrib(GL_ALL_ATTRIB_BITS);

    float width = app.width(), height = app.height();

    glClearColor(153.f / 255, 153.f / 255, 153.f / 255, 1);
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

    glMatrixMode(GL_PROJECTION);
    glPushMatrix();
    gluPerspective(60, width / height, 0.01f, 10.0f);

    glMatrixMode(GL_MODELVIEW);
    glPushMatrix();
    gluLookAt(0, 0, 0, 0, 0, 1, 0, -1, 0);

    glTranslatef(0, 0, +0.5f + app_state.offset_y*0.05f);
    glRotated(app_state.pitch, 1, 0, 0);
    glRotated(app_state.yaw, 0, 1, 0);
    glTranslatef(0, 0, -0.5f);

    glPointSize(width / 640);
    glEnable(GL_TEXTURE_2D);

    int color = 0;

    for (auto&& pc : points)
    {
        auto c = colors[(color++) % (sizeof(colors) / sizeof(float3))];

        glBegin(GL_POINTS);
        glColor3f(c.x, c.y, c.z);

        /* this segment actually prints the pointcloud */
        for (int i = 0; i < pc->points.size(); i++)
        {
            auto&& p = pc->points[i];
            if (p.z)
            {
                // upload the point and texture coordinates only for points we have depth data for
                glVertex3f(p.x, p.y, p.z);
            }
        }

        glEnd();
    }

    // OpenGL cleanup
    glPopMatrix();
    glMatrixMode(GL_PROJECTION);
    glPopMatrix();
    glPopAttrib();
    glPushMatrix();
}

CMakeLists.txt文件如下

#  minimum required cmake version: 3.1.0
cmake_minimum_required(VERSION 3.1.0)

project(rs-pcl)

# Save the command line compile commands in the build output
set(CMAKE_EXPORT_COMPILE_COMMANDS 1)

include(CheckCXXCompilerFlag)
CHECK_CXX_COMPILER_FLAG("-std=c++11" COMPILER_SUPPORTS_CXX11)
CHECK_CXX_COMPILER_FLAG("-std=c++0x" COMPILER_SUPPORTS_CXX0X)
if(COMPILER_SUPPORTS_CXX11)
    set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
elseif(COMPILER_SUPPORTS_CXX0X)
    set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++0x")
endif()


add_executable(rs-pcl rs-pcl.cpp)
target_link_libraries(rs-pcl ${DEPENDENCIES})
set_target_properties (rs-pcl PROPERTIES FOLDER "rs-pcl")

 

你可能感兴趣的:(PCL处理Intel RealSense2读取的点云)