- Leetcode 刷题笔记1 动态规划part05
平乐君
leetcode笔记动态规划
开始完全背包不同于01背包,完全背包的特色在于元素可以重复拿取,因此在递归公式和遍历顺序上都有些许不同。leetcode518零钱兑换||在组合方式中所用到的递推公式是dp[j]=dp[j-coins[i]]+dp[j]对于coins[i]>j的情况,forjinrange(coin[i],amount+1)不会执行,即实现dp[i][j]=dp[i-1][j]classSolution:defc
- Leetcode 刷题笔记1 动态规划part04
平乐君
leetcode笔记动态规划
leetcode最后一块石头的重量||问题转化,把石头问题转化为背包问题,在target容量范围内所能装的最大石头重量classSolution:deflastStoneWeightII(self,stones:List[int])->int:total=sum(stones)target=total//2dp=[0]*(target+1)forstoneinstones:forjinrange(
- MoeCTF 2023 CRYPTO 部分wp
("cat suan_cai_yu")
网络
MoeCTF2023CRYPTO部分wp前言MoeCTF2023CRYPTO方向的部分赛题0x01、baby_e知识点:低加密指数攻击0x02、bad_E知识点:e和phi不互素0x03:bad_random知识点:线性同余算法生成伪随机数0x04.|p-q|知识点:p和q很接近直接爆破0x05.minipack知识点:背包密码,贪心算法总结前言作者通过写文章记录自己的CTF经历,有不对的地方还请
- 算法分析-贪心算法
old-handsome
算法贪心算法算法
文章目录前言一、定义二、特点三、使用场景适用场景:何时使用部分背包问题活动安排问题最优装载问题最小生成树Prim算法:按点检索,适用于稠密图Kruskal算法:并查集+最小生成树Dijkstra算法:不能存在负权边,松弛操作总结前言本博客仅做学习笔记,如有侵权,联系后即刻更改科普:贪心算法一、定义贪心算法是指在对问题进行求解时,在每一步选择中都采取最好或者最优(最有利)的选择,从而希望最终结果是最
- 蓝桥杯算法基础(36)动态规划dp经典问题详解
湖前一人对影成双
算法蓝桥杯动态规划
动态规划-动态规划方法方法代表了这一类问题(最优子结构or子问题最优性)的有一半解法,是设计方法或者策略,不是具体算法-本质是递推,核心是找到状态转移的方式,写出dp方程-形式:记忆性递归递推01背包问题有n个重量和价值分别为wi,vi的物品,从这些物品中挑选出总重量不超过n的物品,求所有挑选方案中的值总和的最大值1=w[i]){intv1=v[i]+dfs(i+1,ww-w[i]);//选择当前
- 华为OD机试 - 核酸最快检测效率 - 动态规划、背包问题(Python/JS/C/C++ 2024 E卷 200分)
哪 吒
华为odpythonjavascript
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新,全天CSDN在线答疑。一、题目描述在系统、网络均正常的情况下组织核酸采样员和
- 【动态规划】 解决背包问题 Python
Alexlllly
Python实现算法python算法动态规划leetcode
【动态规划】解决背包问题Python背包问题背包问题现在有3个物品篮球1kg1000元吉他3kg2000元单反4kg2500元有1个背包重4kg问怎么拿物品价值最大运用动态规划DP来解决此问题方法代码【源码】——思路来自麻省理工背包问题defbackpack(memory,item_weight,values,last_weight,index):'''memory:如果是已经计算过得分支则直接返
- 部分背包问题(贪心算法)
萧毅寒
贪心算法算法
一、概念与问题背景部分背包问题是一种经典的优化问题,其中给定一系列物品,每个物品有一定的重量和价值,目标是在一个固定容量的背包中装入物品,使得背包中物品的总价值最大。与0/1背包问题不同,部分背包问题允许将物品分割,即可以只选择物品的一部分装入背包。二、贪心策略介绍对于部分背包问题,贪心算法是一种有效的解决策略。贪心策略的基本思想是,在每一步选择中,都采取在当前状态下最好或最优(即最有利)的选择,
- 算法研究员技术图谱和学习路径
执于代码
开发者职业加速服务算法学习
一、基础阶段:构建算法与数学根基数据结构与基础算法数据结构:数组、链表、栈、队列、哈希表、树(二叉搜索树、堆、字典树)、图等。基础算法:排序(快速排序、堆排序)、查找(二分查找)、递归与分治、贪心算法、简单动态规划(背包问题)、字符串匹配(KMP、Rabin-Karp)、图遍历(BFS/DFS)等。实践方法:通过LeetCode等平台刷题(如“剑指Offer”系列),掌握算法原理与代码实现。数学基
- 第十三届蓝桥杯大赛软件赛决赛C/C++ 大学 B 组
Kent_J_Truman
蓝桥杯蓝桥杯
A【2022——暴力DP/优雅背包】-CSDN博客B【钟表——类日期问题】-CSDN博客C【卡牌——二分】-CSDN博客D【最大数字——DFS】-CSDN博客E【出差——Dijkstra】-CSDN博客F【费用报销——01背包】-CSDN博客G【故障——条件概率】-CSDN博客H【机房——LCA】-CSDN博客I【齿轮——优化(预处理,去重,哈希)】-CSDN博客J【搬砖——经典带贪心01背包(背
- 力扣-动态规划-518 零钱兑换Ⅱ
夏末秋也凉
力扣#动态规划算法
思路dp数组定义:完全背包,不限物品使用次数,使用0-i的硬币,总和小于等于j的组合方式有dp[i][j]个递推公式:if(j>=coins[i])dp[i][j]=dp[i-1][j]+dp[i][j-coins[i]];elsedp[i][j]=dp[i-1][j];dp数组初始化:第一行以及第一列初始化为1遍历顺序:左右,上下时间复杂度:代码classSolution{public:intc
- 力扣-动态规划-322 零钱兑换
夏末秋也凉
力扣#动态规划leetcode动态规划算法
思路dp数组定义:凑齐总和为j的最少硬币个数为dp[j]递推公式:dp[j]=min(dp[j],1+dp[j-coins[i]]);dp数组初始化:dp[0]=0;遍历顺序:先背包再物品和先物品再背包是一样的,(组合问题先物品再背包,排列问题先背包再物品),此处求的是最少硬币个数时间复杂度:代码classSolution{public:intcoinChange(vector&coins,int
- day37 第九章 动态规划 part05
mvufi
动态规划算法
tips:1.两层for可以理解为是按顺序的。外层物品内层背包,不同物品放进背包只有一种顺序,如a,b,放时要么a在前,要么b在前,只有一种之前定好的物品的顺序;外层背包内层物品,a,b可以有a+b和b+a两种,均计入。引申:排列,ab,ba算两种排列方式组合,ab,ba算一种排列方式,如果只有ab,那也是组合数2.写算法不需要证明,找例子就行完全背包n,bagweight=map(int,inp
- 详解动态规划之01背包问题及其空间压缩(图文并茂+例题讲解)
看繁星aa
动态规划算法
1.动态规划问题的本质记忆化地暴力搜索所有可能性来得到问题的解我们常常会遇到一些问题,需要我们在n次操作,且每次操作有k种选择时,求出最终需要的最小或最大代价。处理类似的问题,我们一般需要遍历所有的可能性(相当于走一遍所有的路径),然后找到我们所需要的解。很明显我们可以构成一棵“决策树”,假设n=2,k=3,那么:我们可以通过DFS或者BFS来遍历整棵树,从而搜寻到我们需要的结果。时间复杂度:O(
- leetcode刷题-动态规划06
emmmmXxxy
leetcode动态规划算法
代码随想录动态规划part06|322.零钱兑换、279.完全平方数、139.单词拆分322.零钱兑换279.完全平方数139.单词拆分关于多重背包,你该了解这些!背包问题总结篇!322.零钱兑换leetcode题目链接代码随想录文档讲解思路:完全背包整理:完全背包理论基础:装满这个背包可得的最大价值(遍历顺序可以颠倒)零钱兑换2:装满背包有多少种方法(每种方法不强调顺序,组合数)(先遍历物品再遍
- codeforces 1600 分题目泛刷
Exiled_Code
算法c++
本文为codeforces1600分,顺序以过题人数为排序关键字的题目题解目前已更新前50题Problem-431C-K-tree标签:类似背包dp思路:f[i][0/1]走到某一点时,表示总得分为i时,是否满足要求的路径这一种分值可以从k种路线走过来,所以二重循环枚举1num=a0+∑i=1n−1ai∗26inum=a_0+\sum_{i=1}^{n-1}a_i*26^inum=a0+∑i=1n
- CSP-J/S复赛算法 动态规划初步
人才程序员
CSP-J算法动态规划深度优先c++noiCSP-J/S
文章目录前言动态规划动态规划常见形式动态规划求最值的几个例子1.**背包问题**2.**最短路径问题**3.**最小硬币找零问题**4.**最长递增子序列**总结最优子结构举个简单的例子其他例子条件DP的核心就是穷举具体解释递归的算法时间复杂度dp数组的迭代解法通俗易懂的解释比喻状态转移方程详解状态转移方程中的状态概念通俗易懂的解释:举个例子:状态总结:DP的无后效性通俗易懂的解释举个例子特点总结
- 一张表解释01背包问题
apcipot_rain
算法算法蓝桥杯c语言
背包问题的概述:已知背包容量为m,有一堆物品(n个),每个物品都有重量和价值,求解怎么放物品能让拿到的东西价值达到最大。一道测试用例:104310411512613dp数组可视化:操作n\m12345678910输入3101001010101010101010输入4102001011111121212121输入5123001011121221222222输入61340010111213212223
- Java 算法和数据结构 答案整理,最新面试题
扫地僧009
互联网大厂面试题java算法数据结构
Java中如何使用动态规划求解背包问题?1、定义子问题:首先确定动态规划状态,通常以物品数量和背包容量为变量定义子问题,例如dp[i][j]表示前i件物品放入容量为j的背包所能获得的最大价值。2、确定状态转移方程:基于是否选择当前物品,将问题分为两个子问题,即dp[i][j]=max(dp[i-1][j],dp[i-1][j-weight[i]]+value[i]),表示选择当前物品和不选择当前物
- 【算法分析】实验 4. 回溯法求解0-1背包等问题
weixin_30387663
数据结构与算法
目录实验内容实验目的实验结果步骤1:描述与分析步骤2:策略以及数据结构步骤3步骤4步骤5步骤6实验总结实验内容本实验要求基于算法设计与分析的一般过程(即待求解问题的描述、算法设计、算法描述、算法正确性证明、算法分析、算法实现与测试),通过回溯法的在实际问题求解实践中,加深理解其基本原理和思想以及求解步骤。求解的问题为0-1背包。作为挑战:可以考虑回溯法在其他问题(如最大团问题、旅行商、图的m着色问
- 背包问题-动态规划算法(附带Python代码解析)
心碎小猫p
算法动态规划python
一.背包问题概述:给定n种物品和一个容量为capacity的背包,其中每一个物品的重量和价值已知。问:应该如何选择装入背包的物品,使得装入背包中的物品的总价值最大?二.分析过程:1.思路:对于每一个物品只有两种选择,第一种情况:装入当前物品;第二种情况:不装入当前物品。我们从第一个物品开始,将其重量和背包容量进行比较,如果比背包容量小,则选择将这个物品装入背包,记录它的价值(如果比背包容量大,忽略
- 贪心算法.
pianmian1
贪心算法算法
贪心算法是指只从当前角度出发,做出当前情景下最好的选择,在某种意义上来说是局部最优解,并不从全局的角度做决策.如果贪心策略选择不恰当,可能无法得到全局最优解.贪心算法的基本流程如下:1.分析问题,确定优化目标,对变量进行初始化2.制定贪心策略:在制定贪心策略时需要证明所选贪心策略一定可以得到全局最优解,若找到反例则推翻当前贪心策略,重新确定贪心策略.完全背包问题本节以完全背包问题为例,说明贪心算法
- 【Unity知识点详解】Button点击事件拓展,单击、双击、长按实现
火一线
Unityunity游戏引擎
Button拓展今天来聊一下关于Button的事件拓展,这里只是拿Button来举例,Unity中其他的UI组件如Toggle、Slider等都也适用。我们知道在Button中我们可以通过onClick的方式来添加点击事件,但在游戏开发过程中我们往往对Button有着更多的功能需求,比如说双击、长按、按钮按下、按钮弹起等。这里举一个游戏中实际的例子,在游戏背包中的道具,单击道具时我们需要显示道具的
- 蓝桥杯学习大纲
ん贤
蓝桥杯算法数据结构
(致酷德与热爱算法、编程的小伙伴们)在查阅了相当多的资料后,发现没有那篇博客、文章很符合我们备战蓝桥杯的学习路径。所以,干脆自己整理一篇,欢迎大家补充!一、蓝桥必备高频考点我们以此为重点学习方向:1.基础算法枚举模拟贪心递归分治构造前缀和差分2.搜索与排序线性搜索二分法BFSDFS回溯剪枝深搜优化记忆化搜索位运算冒泡排序归并排序快速排序桶排序3.动态规划编辑距离最长不重复子串整数背包矩阵连乘最长公
- 蓝桥杯备赛Day3(Python组)——动态规划
Jiayuguo68
蓝桥杯职场和发展
主要考点:线性DP、背包DP、记忆化搜索一、找零兑换问题1.递归解法defrecMC(coinValuelist,change):minCoins=change#最少零钱个数ifchangeincoinValuelist:#递归边界是四种单位零钱return1else:foriin[cforcincoinValuelistifc0:#记忆数组中有,直接用最优解returnknownResults[
- 动态规划之背包问题--python版本
我是小码搬运工
#python基础动态规划背包问题python版本
动态规划之背包问题–python版本问题已知一个最大量的背包,给定一组给定固定价值和固定体积的物品,求在不超过最大值的前提下,能放入背包中的最大总价值。解题思路该问题是典型的动态规划问题,分为三种不同的类型(0-1背包问题、完全背包和多重背包问题)解题关键–状态转移表达式:B(k,C)=max(B(k−1,C),B(k−1,C−ci)+vi)B(k,C)=max(B(k-1,C),B(k-1,C-
- 动态规划之背包问题全解
学会了,不,学废了
动态规划
概述———动态规划提出人:理查德·贝尔曼本质:一张表格处理方法内容:把原问题分解为若干子问题,自底向上先求解最小子问题,把结果储存在表格中,求解大的子问题时直接从表格中查询小的子问题的解,以避免重复计算,从而提高效率。一、动态规划求解原理适用范围:问题需要具备3个性质———最优子结构、子问题重叠、无后效性。最优子结构指问题最优解包含其子问题的最优解,是使用动态规划的基本条件。三要素:状态、阶段、决
- 动态规划之背包问题的Python实现
名侦探debug
Python数据结构python数据结构动态规划求解
目录1.问题描述2.动态规划之网格法3.python实现1.问题描述题目来源于《算法图解》第9章练习题9.2,如下图所示。对于背包问题,通常的做法有列举法、贪婪算法和动态规划(1)列举法:列举出所有的可能情况,再选择最优解,但当情况很多时,这种算法复杂度很高(2)贪婪算法:在容量允许范围内,每次都拿剩余物品中价值最高的,贪婪算法能够快速解决复杂度很高的问题,但通常得到的是次优解,但就对这个题目而言
- 动态规划之背包问题
于冬恋
动态规划算法
动态规划是一个重要的算法范式,它将一个问题分解为一系列更小的子问题,并通过存储子问题的解来避免重复计算,从而大幅提升时间效率。目录01背包问题完全背包问题多重背包问题二维费用背包问题(1)01背包问题给定n个物体,和一个容量为c的背包,物品i的重量为wi,其价值为应该如何选择装入背包的物品使其获得的总价值最大。可以用贪心算法,但是不一定能达到最优解,所以用动态规划解决创建一个数组dp[i][j]i
- 刷题计划day29 动规01背包(一)【01背包】【分割等和子集】【最后一块石头的重量 II】
哈哈哈的懒羊羊
算法java数据结构leetcode动态规划背包问题蓝桥杯
⚡刷题计划day29动规01背包(一)开始,可以点个免费的赞哦~往期可看专栏,关注不迷路,您的支持是我的最大动力~目录背包问题前言01背包二维数组dp[i][j]关于是否放物品:关于二维dp遍历顺序:一维数组dp(滚动数组)关于一维dp遍历顺序:题目一:416.分割等和子集题目二:1049.最后一块石头的重量II背包问题前言对于面试的话,其实掌握01背包和完全背包,就够用了,最多可以再来一个多重背
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc