蓝桥杯 垒骰子(第六届第八题)


垒骰子

赌圣atm晚年迷恋上了垒骰子,就是把骰子一个垒在另一个上边,不能歪歪扭扭,要垒成方柱体。
经过长期观察,atm 发现了稳定骰子的奥秘:有些数字的面贴着会互相排斥!
我们先来规范一下骰子:1 的对面是 4,2 的对面是 5,3 的对面是 6。
假设有 m 组互斥现象,每组中的那两个数字的面紧贴在一起,骰子就不能稳定的垒起来。 
atm想计算一下有多少种不同的可能的垒骰子方式。
两种垒骰子方式相同,当且仅当这两种方式中对应高度的骰子的对应数字的朝向都相同。
由于方案数可能过多,请输出模 10^9 + 7 的结果。

不要小看了 atm 的骰子数量哦~

「输入格式」
第一行两个整数 n m
n表示骰子数目
接下来 m 行,每行两个整数 a b ,表示 a 和 b 数字不能紧贴在一起。

「输出格式」
一行一个数,表示答案模 10^9 + 7 的结果。

「样例输入」
2 1
1 2

「样例输出」 
544

「数据范围」
对于 30% 的数据:n <= 5
对于 60% 的数据:n <= 100
对于 100% 的数据:0 < n <= 10^9, m <= 36


资源约定:
峰值内存消耗 < 256M
CPU消耗  < 2000ms


请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。

所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。

注意: main函数需要返回0
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include , 不能通过工程设置而省略常用头文件。

提交时,注意选择所期望的编译器类型。


 

动态规划+矩阵快速幂

我们用dp[i][j]表示第i个骰子j面朝上(不考虑旋转)的摆法。dp[ i ][ j ] 就等于 i-1 高度时所有与j的反面无冲突的方案数累加,由于骰子能够旋转,最后的结果还要乘上4^n。由于数据规模达到10^9,O(n)的dp会超时的。所以我们使用矩阵计算。

 

参考:

https://blog.csdn.net/qq_34594236/article/details/53616283

https://blog.csdn.net/lonverce/article/details/45061133

http://huanyouchen.github.io/2018/05/23/Quick-Matrix-Pow/

你可能感兴趣的:(蓝桥杯)