基于FPGA的SDRAM控制器设计(2)

基于FPGA的SDRAM的自刷新操作

  • SDRAM自刷新简述
  • SDRAM自刷新时序图
  • SDRAM自刷新代码
  • 仿真模块的代码
  • 仿真结果测试
  • 参考文献
  • 总结

SDRAM自刷新简述

SDRAM作为一个RAM并没有断电保存的功能,在操作的SDRAM的时候每隔一段时间必须对SDRAM进行自刷新操作,防止SDRAM中的数据丢失。那么,SDRAM 每两次刷新的间隔是多长时间呢。这个时间需要查找技术手册:
基于FPGA的SDRAM控制器设计(2)_第1张图片
64ms 是电容在未充电的状态下能保持电量的最长时间,也就是 SDRAM 在未刷新的状态下能保存数据的最长时间是 64ms。而SDRAM的书信操作是一行一行刷新的,该SDRAM一共4096行,所以,每两次刷新的时间间隔大约是 64ms / 4096 = 15.625us。 在本项目中, 我们设置刷新间隔为 15us。

由于SDRAM需要同时调控自刷新、读操作、写操作的协调,所以在顶层需要控制三个模块的执行顺序,这三个模块中自刷新命令的优先级最高,但是在执行读写操作时需要等待本次突发结束才可以调到自刷新模块执行,否则就会丢数据。

以刷新操作为例: 当刷新的时间到了之后,刷新模块向仲裁发起刷新请求,然后仲裁老大根据 SDRAM 当前所处的一个状态来判断是否可以允许 SDRAM 进行刷新,当仲裁老大认为 SDRAM 可以刷新了之后,向刷新模块给出刷新使能信号;当刷新模块对 SDRAM 进行刷新完毕后,再向仲裁老大给出刷新结束标志。模块之间的状态转移图如下:
基于FPGA的SDRAM控制器设计(2)_第2张图片
模块间的细节图如下:
基于FPGA的SDRAM控制器设计(2)_第3张图片
这里为了省事直接套用了开源骚客的图形,有不懂的同学可以关注该老师,自己从该老师的课程中学到了很多知识。

SDRAM自刷新时序图

SDRAM刷新模块的时序图如下:
基于FPGA的SDRAM控制器设计(2)_第4张图片
上面的COMMAND是与上电初始化模块相同的四个控制信号。同样需要特别注意A10这个信号,一般是对全部bank进行预充电操作。

SDRAM自刷新代码

这里我们需要在SDRAM的顶层模块补充仲裁模块,所遵循的方式正是上面的状态机,代码如下:

`timescale 1ns / 1ps
// *********************************************************************************
// Project Name : OSXXXX
// Author       : zhangningning
// Email        : [email protected]
// Website      : 
// Module Name  : sdram_top.v
// Create Time  : 2020-02-09 17:22:24
// Editor       : sublime text3, tab size (4)
// CopyRight(c) : All Rights Reserved
//
// *********************************************************************************
// Modification History:
// Date             By              Version                 Change Description
// -----------------------------------------------------------------------
// XXXX       zhangningning          1.0                        Original
//  
// *********************************************************************************

module sdram_top(
    //System Interfaces
    input                   sclk            ,
    input                   rst_n           ,
    //SDRAM Interfaces
    output  wire            sdram_clk       ,
    output  wire            sdram_cke       ,
    output  reg             sdram_cs_n      ,
    output  reg             sdram_cas_n     ,
    output  reg             sdram_ras_n     ,
    output  reg             sdram_we_n      ,
    output  wire    [ 1:0]  sdram_bank      ,
    output  reg     [11:0]  sdram_addr      ,
    output  wire    [ 1:0]  sdram_dqm       ,
    inout           [15:0]  sdram_dq        
);
 
//========================================================================================\
//**************Define Parameter and  Internal Signals**********************************
//========================================================================================/
localparam      NOP     =   4'b0111         ;

localparam      IDLE    =   5'b0_0001       ;
localparam      ARBIT   =   5'b0_0010       ;
localparam      AREF    =   5'b0_0100       ;
localparam      WRITE   =   5'b0_1000       ;
localparam      READ    =   5'b1_0000       ;
//sdram_init
wire                [ 3:0]  init_cmd        ;
wire                [11:0]  init_addr       ;
wire                        init_done       ;
//AREF
wire                        aref_req        ;
reg                         aref_en         ;
wire                        aref_end        ;
wire                [ 3:0]  aref_cmd        ;
wire                [11:0]  aref_addr       ;
//WRITE

//READ

//ARBIT
reg                 [ 4:0]  state           ;
 
//========================================================================================\
//**************     Main      Code        **********************************
//========================================================================================/
assign      sdram_dqm       =       2'b00;
assign      sdram_clk       =       ~sclk;
assign      sdram_cke       =       1'b1;
assign      sdram_bank      =       2'b00;

always @(posedge sclk or negedge rst_n)
    if(rst_n == 1'b0)
        state       <=      IDLE;
    else case(state)
        IDLE    :   if(init_done == 1'b1)
                        state           <=      ARBIT;
                    else 
                        state           <=      state;
        ARBIT   :   if(aref_req == 1'b1)
                        state           <=      AREF;
                    else
                        state           <=      state;
        AREF    :   if(aref_end == 1'b1)
                        state           <=      ARBIT;
                    else
                        state           <=      state;
        default :   state           <=      IDLE;
    endcase

always @(*)
    case(state)
        IDLE    :   begin
                        sdram_addr      <=      init_addr;
                        {sdram_cs_n, sdram_ras_n, sdram_cas_n, sdram_we_n}      =       init_cmd;
                    end
        AREF    :   begin
                        sdram_addr      <=      aref_addr;
                        {sdram_cs_n, sdram_ras_n, sdram_cas_n, sdram_we_n}      =       aref_cmd;
                    end
        default :   begin
                        sdram_addr      <=      12'd0;
                        {sdram_cs_n, sdram_ras_n, sdram_cas_n, sdram_we_n}      =       NOP;
                    end
    endcase

always @(posedge sclk or negedge rst_n)
    if(rst_n == 1'b0)
        aref_en             <=      1'b0;
    else if(state == ARBIT && aref_req == 1'b1) 
        aref_en             <=      1'b1;
    else
        aref_en             <=      1'b0;

sdram_init sdram_init_inst(
    //System Interfaces
    .sclk                   (sclk                   ),
    .rst_n                  (rst_n                  ),
    //SDRAM Interfaces
    .sdram_cmd              (init_cmd               ),
    .sdram_addr             (init_addr              ),
    //Others
    .init_done              (init_done              )
);

sdram_aref sdram_aref_inst(
    //Sysytem Interfaces
    .sclk                   (sclk                   ),
    .rst_n                  (rst_n                  ),
    //SDRAM Interfaces
    .aref_cmd               (aref_cmd               ),
    .aref_addr              (aref_addr              ),
    //Others
    .aref_req               (aref_req               ),
    .aref_end               (aref_end               ),
    .aref_en                (aref_en                ),
    .init_done              (init_done              )
);



endmodule

代码不多,但是要特别注意仲裁状态机的书写,很有借鉴意义。
自刷新模块的代码:

`timescale 1ns / 1ps
// *********************************************************************************
// Project Name : OSXXXX
// Author       : zhangningning
// Email        : [email protected]
// Website      : 
// Module Name  : sdram_aref.v
// Create Time  : 2020-02-10 13:34:03
// Editor       : sublime text3, tab size (4)
// CopyRight(c) : All Rights Reserved
//
// *********************************************************************************
// Modification History:
// Date             By              Version                 Change Description
// -----------------------------------------------------------------------
// XXXX       zhangningning          1.0                        Original
//  
// *********************************************************************************

module sdram_aref(
    //Sysytem Interfaces
    input                   sclk            ,
    input                   rst_n           ,
    //SDRAM Interfaces
    output  reg     [ 3:0]  aref_cmd        ,
    output  wire    [11:0]  aref_addr       ,
    //Others
    input                   init_done       ,
    output  reg             aref_req        ,
    output  reg             aref_end        ,
    input                   aref_en         
);
 
//========================================================================================\
//**************Define Parameter and  Internal Signals**********************************
//========================================================================================/
localparam  NOP         =   4'b0111         ;
localparam  PRE         =   4'b0010         ;
localparam  AREF        =   4'b0001         ;
localparam  DELAY_15US  =   11'd1500        ;

reg                         aref_flag       ;
reg             [ 2:0]      cnt_cmd         ;
reg             [10:0]      cnt_15ms        ;

 
//========================================================================================\
//**************     Main      Code        **********************************
//========================================================================================/
assign  aref_addr           =       12'b0100_0000_0000;

always @(posedge sclk or negedge rst_n)
    if(rst_n == 1'b0)
        aref_flag           <=      1'b0; 
    else if(cnt_cmd >= 3'd4)
        aref_flag           <=      1'b0;
    else if(aref_en == 1'b1)
        aref_flag           <=      1'b1;
    else
        aref_flag           <=      aref_flag;

always @(posedge sclk or negedge rst_n)
    if(rst_n == 1'b0)
        cnt_cmd             <=      3'd0;
    else if(cnt_cmd >= 3'd4)
        cnt_cmd             <=      3'd0;
    else if(aref_flag == 1'b1)
        cnt_cmd             <=      cnt_cmd + 1'b1; 
    
always @(posedge sclk or negedge rst_n)
    if(rst_n == 1'b0)
        aref_cmd            <=      NOP;    
    else case(cnt_cmd)
        1       :   aref_cmd            <=      PRE;
        4       :   aref_cmd            <=      AREF;
        default :   aref_cmd            <=      NOP;
    endcase
   
always @(posedge sclk or negedge rst_n)
    if(rst_n == 1'b0)
        aref_end            <=      1'b0;
    else if(cnt_cmd >= 3'd4)
        aref_end            <=      1'b1;
    else
        aref_end            <=      1'b0;   
          
always @(posedge sclk or negedge rst_n)
    if(rst_n == 1'b0)
        cnt_15ms            <=      20'd0;
    else if(cnt_15ms == DELAY_15US)
        cnt_15ms            <=      20'd0;
    else if(init_done == 1'b1) 
        cnt_15ms            <=      cnt_15ms + 1'b1;
    else
        cnt_15ms            <=      20'd0;

always @(posedge sclk or negedge rst_n)
    if(rst_n == 1'b0)
        aref_req            <=      1'b0; 
    else if(cnt_15ms == DELAY_15US)
        aref_req            <=      1'b1;
    else if(aref_en == 1'b1)
        aref_req            <=      1'b0;
    else
        aref_req            <=      aref_req;
            

endmodule

为了完整性,这里我们也给出上一节的上电初始化代码:

`timescale 1ns / 1ps
// *********************************************************************************
// Project Name : OSXXXX
// Author       : zhangningning
// Email        : [email protected]
// Website      : 
// Module Name  : sdram_aref.v
// Create Time  : 2020-02-10 13:34:03
// Editor       : sublime text3, tab size (4)
// CopyRight(c) : All Rights Reserved
//
// *********************************************************************************
// Modification History:
// Date             By              Version                 Change Description
// -----------------------------------------------------------------------
// XXXX       zhangningning          1.0                        Original
//  
// *********************************************************************************

module sdram_aref(
    //Sysytem Interfaces
    input                   sclk            ,
    input                   rst_n           ,
    //SDRAM Interfaces
    output  reg     [ 3:0]  aref_cmd        ,
    output  wire    [11:0]  aref_addr       ,
    //Others
    input                   init_done       ,
    output  reg             aref_req        ,
    output  reg             aref_end        ,
    input                   aref_en         
);
 
//========================================================================================\
//**************Define Parameter and  Internal Signals**********************************
//========================================================================================/
localparam  NOP         =   4'b0111         ;
localparam  PRE         =   4'b0010         ;
localparam  AREF        =   4'b0001         ;
localparam  DELAY_15US  =   11'd1500        ;

reg                         aref_flag       ;
reg             [ 2:0]      cnt_cmd         ;
reg             [10:0]      cnt_15ms        ;

 
//========================================================================================\
//**************     Main      Code        **********************************
//========================================================================================/
assign  aref_addr           =       12'b0100_0000_0000;

always @(posedge sclk or negedge rst_n)
    if(rst_n == 1'b0)
        aref_flag           <=      1'b0; 
    else if(cnt_cmd >= 3'd4)
        aref_flag           <=      1'b0;
    else if(aref_en == 1'b1)
        aref_flag           <=      1'b1;
    else
        aref_flag           <=      aref_flag;

always @(posedge sclk or negedge rst_n)
    if(rst_n == 1'b0)
        cnt_cmd             <=      3'd0;
    else if(cnt_cmd >= 3'd4)
        cnt_cmd             <=      3'd0;
    else if(aref_flag == 1'b1)
        cnt_cmd             <=      cnt_cmd + 1'b1; 
    
always @(posedge sclk or negedge rst_n)
    if(rst_n == 1'b0)
        aref_cmd            <=      NOP;    
    else case(cnt_cmd)
        1       :   aref_cmd            <=      PRE;
        4       :   aref_cmd            <=      AREF;
        default :   aref_cmd            <=      NOP;
    endcase
   
always @(posedge sclk or negedge rst_n)
    if(rst_n == 1'b0)
        aref_end            <=      1'b0;
    else if(cnt_cmd >= 3'd4)
        aref_end            <=      1'b1;
    else
        aref_end            <=      1'b0;   
          
always @(posedge sclk or negedge rst_n)
    if(rst_n == 1'b0)
        cnt_15ms            <=      20'd0;
    else if(cnt_15ms == DELAY_15US)
        cnt_15ms            <=      20'd0;
    else if(init_done == 1'b1) 
        cnt_15ms            <=      cnt_15ms + 1'b1;
    else
        cnt_15ms            <=      20'd0;

always @(posedge sclk or negedge rst_n)
    if(rst_n == 1'b0)
        aref_req            <=      1'b0; 
    else if(cnt_15ms == DELAY_15US)
        aref_req            <=      1'b1;
    else if(aref_en == 1'b1)
        aref_req            <=      1'b0;
    else
        aref_req            <=      aref_req;
            

endmodule

仿真模块的代码

其实这里与上一篇文章中仿真模块的代码完全相同,同样为了完整性,给出代码:
顶层测试模块的代码:

`timescale 1ns / 1ps
`define CLOCK    10
// *********************************************************************************
// Project Name : OSXXXX
// Author       : zhangningning
// Email        : [email protected]
// Website      : 
// Module Name  : sdram_init_tb.v
// Create Time  : 2020-02-09 17:10:08
// Editor       : sublime text3, tab size (4)
// CopyRight(c) : All Rights Reserved
//
// *********************************************************************************
// Modification History:
// Date             By              Version                 Change Description
// -----------------------------------------------------------------------
// XXXX       zhangningning          1.0                        Original
//  
// *********************************************************************************

module sdram_init_tb;
reg                         sclk            ;
reg                         rst_n           ;
wire                        sdram_clk       ;
wire                        sdram_cke       ;
wire                        sdram_cs_n      ;
wire                        sdram_cas_n     ;
wire                        sdram_ras_n     ;
wire                        sdram_we_n      ;
wire    [ 1:0]              sdram_bank      ;
wire    [11:0]              sdram_addr      ;
wire    [ 1:0]              sdram_dqm       ;
wire    [15:0]              sdram_dq        ;

initial begin
    sclk        =       1'b0;
    rst_n       <=      1'b0;
    #(100*`CLOCK);
    rst_n       <=      1'b1;
end
always  #(`CLOCK/2)     sclk        =       ~sclk;  

sdram_top sdram_top_inst(
    //System Interfaces
    .sclk                   (sclk                   ),
    .rst_n                  (rst_n                  ),
    //SDRAM Interfaces
    .sdram_clk              (sdram_clk              ),
    .sdram_cke              (sdram_cke              ),
    .sdram_cs_n             (sdram_cs_n             ),
    .sdram_cas_n            (sdram_cas_n            ),
    .sdram_ras_n            (sdram_ras_n            ),
    .sdram_we_n             (sdram_we_n             ),
    .sdram_bank             (sdram_bank             ),
    .sdram_addr             (sdram_addr             ),
    .sdram_dqm              (sdram_dqm              ),
    .sdram_dq               (sdram_dq               )
);

defparam        sdram_model_plus_inst.addr_bits =       12;
defparam        sdram_model_plus_inst.data_bits =       16;
defparam        sdram_model_plus_inst.col_bits  =       9;
defparam        sdram_model_plus_inst.mem_sizes =       2*1024*1024;            // 2M

sdram_model_plus sdram_model_plus_inst(
    .Dq                     (sdram_dq               ), 
    .Addr                   (sdram_addr             ), 
    .Ba                     (sdram_bank             ), 
    .Clk                    (sdram_clk              ), 
    .Cke                    (sdram_cke              ), 
    .Cs_n                   (sdram_cs_n             ), 
    .Ras_n                  (sdram_ras_n            ), 
    .Cas_n                  (sdram_cas_n            ), 
    .We_n                   (sdram_we_n             ), 
    .Dqm                    (sdram_dqm              ),
    .Debug                  (1'b1                   )
);

endmodule

仿真模型的代码:

/***************************************************************************************
作者:	李晟
2003-08-27	V0.1	李晟 
 
 添加内存模块倒空功能,在外部需要创建事件:sdram_r ,本SDRAM的内容将会按Bank 顺序damp out 至文件
 sdram_data.txt 中
×××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××*/
//2004-03-04	陈乃奎	修改原程序中将BANK的数据转存入TXT文件的格式
//2004-03-16	陈乃奎	修改SDRAM 的初始化数据
//2004/04/06	陈乃奎	将SDRAM的操作命令以字符形式表示,以便用MODELSIM监视
//2004/04/19	陈乃奎	修改参数 parameter tAC  =   8;
//2010/09/17	罗瑶	修改sdram的大小,数据位宽,dqm宽度;
/****************************************************************************************
*
*    File Name:  sdram_model.V  
*      Version:  0.0f
*         Date:  July 8th, 1999
*        Model:  BUS Functional
*    Simulator:  Model Technology (PC version 5.2e PE)
*
* Dependencies:  None
*
*       Author:  Son P. Huynh
*        Email:  [email protected]
*        Phone:  (208) 368-3825
*      Company:  Micron Technology, Inc.
*        Model:  sdram_model (1Meg x 16 x 4 Banks)
*
*  Description:  64Mb SDRAM Verilog model
*
*   Limitation:  - Doesn't check for 4096 cycle refresh
*
*         Note:  - Set simulator resolution to "ps" accuracy
*                - Set Debug = 0 to disable $display messages
*
*   Disclaimer:  THESE DESIGNS ARE PROVIDED "AS IS" WITH NO WARRANTY 
*                WHATSOEVER AND MICRON SPECIFICALLY DISCLAIMS ANY 
*                IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
*                A PARTICULAR PURPOSE, OR AGAINST INFRINGEMENT.
*
*                Copyright ?1998 Micron Semiconductor Products, Inc.
*                All rights researved
*
* Rev   Author          Phone         Date        Changes
* ----  ----------------------------  ----------  ---------------------------------------
* 0.0f  Son Huynh       208-368-3825  07/08/1999  - Fix tWR = 1 Clk + 7.5 ns (Auto)
*       Micron Technology Inc.                    - Fix tWR = 15 ns (Manual)
*                                                 - Fix tRP (Autoprecharge to AutoRefresh)
*
* 0.0a  Son Huynh       208-368-3825  05/13/1998  - First Release (from 64Mb rev 0.0e)
*       Micron Technology Inc.
****************************************************************************************/

`timescale 1ns / 100ps

module sdram_model_plus (Dq, Addr, Ba, Clk, Cke, Cs_n, Ras_n, Cas_n, We_n, Dqm,Debug);

    parameter addr_bits =	11;
    parameter data_bits = 	32;
    parameter col_bits  =	8;
    parameter mem_sizes =	1048576*2-1;//1 Meg 

    inout     [data_bits - 1 : 0] Dq;
    input     [addr_bits - 1 : 0] Addr;
    input                 [1 : 0] Ba;
    input                         Clk;
    input                         Cke;
    input                         Cs_n;
    input                         Ras_n;
    input                         Cas_n;
    input                         We_n;
    input                 [3 : 0] Dqm;          //高低各8bit
    //added by xzli
    input			  Debug;

    reg       [data_bits - 1 : 0] Bank0 [0 : mem_sizes];//存储器类型数据
    reg       [data_bits - 1 : 0] Bank1 [0 : mem_sizes];
    reg       [data_bits - 1 : 0] Bank2 [0 : mem_sizes];
    reg       [data_bits - 1 : 0] Bank3 [0 : mem_sizes];

    reg                   [1 : 0] Bank_addr [0 : 3];                // Bank Address Pipeline
    reg        [col_bits - 1 : 0] Col_addr [0 : 3];                 // Column Address Pipeline
    reg                   [3 : 0] Command [0 : 3];                  // Command Operation Pipeline
    reg                   [3 : 0] Dqm_reg0, Dqm_reg1;               // DQM Operation Pipeline
    reg       [addr_bits - 1 : 0] B0_row_addr, B1_row_addr, B2_row_addr, B3_row_addr;

    reg       [addr_bits - 1 : 0] Mode_reg;
    reg       [data_bits - 1 : 0] Dq_reg, Dq_dqm;
    reg       [col_bits - 1 : 0] Col_temp, Burst_counter;

    reg                           Act_b0, Act_b1, Act_b2, Act_b3;   // Bank Activate
    reg                           Pc_b0, Pc_b1, Pc_b2, Pc_b3;       // Bank Precharge

    reg                   [1 : 0] Bank_precharge     [0 : 3];       // Precharge Command
    reg                           A10_precharge      [0 : 3];       // Addr[10] = 1 (All banks)
    reg                           Auto_precharge     [0 : 3];       // RW AutoPrecharge (Bank)
    reg                           Read_precharge     [0 : 3];       // R  AutoPrecharge
    reg                           Write_precharge    [0 : 3];       //  W AutoPrecharge
    integer                       Count_precharge    [0 : 3];       // RW AutoPrecharge (Counter)
    reg                           RW_interrupt_read  [0 : 3];       // RW Interrupt Read with Auto Precharge
    reg                           RW_interrupt_write [0 : 3];       // RW Interrupt Write with Auto Precharge

    reg                           Data_in_enable;
    reg                           Data_out_enable;

    reg                   [1 : 0] Bank, Previous_bank;
    reg       [addr_bits - 1 : 0] Row;
    reg        [col_bits - 1 : 0] Col, Col_brst;

    // Internal system clock
    reg                           CkeZ, Sys_clk;

    reg	[21:0]	dd;
    
    // Commands Decode
    wire      Active_enable    = ~Cs_n & ~Ras_n &  Cas_n &  We_n;
    wire      Aref_enable      = ~Cs_n & ~Ras_n & ~Cas_n &  We_n;
    wire      Burst_term       = ~Cs_n &  Ras_n &  Cas_n & ~We_n;
    wire      Mode_reg_enable  = ~Cs_n & ~Ras_n & ~Cas_n & ~We_n;
    wire      Prech_enable     = ~Cs_n & ~Ras_n &  Cas_n & ~We_n;
    wire      Read_enable      = ~Cs_n &  Ras_n & ~Cas_n &  We_n;
    wire      Write_enable     = ~Cs_n &  Ras_n & ~Cas_n & ~We_n;

    // Burst Length Decode
    wire      Burst_length_1   = ~Mode_reg[2] & ~Mode_reg[1] & ~Mode_reg[0];
    wire      Burst_length_2   = ~Mode_reg[2] & ~Mode_reg[1] &  Mode_reg[0];
    wire      Burst_length_4   = ~Mode_reg[2] &  Mode_reg[1] & ~Mode_reg[0];
    wire      Burst_length_8   = ~Mode_reg[2] &  Mode_reg[1] &  Mode_reg[0];

    // CAS Latency Decode
    wire      Cas_latency_2    = ~Mode_reg[6] &  Mode_reg[5] & ~Mode_reg[4];
    wire      Cas_latency_3    = ~Mode_reg[6] &  Mode_reg[5] &  Mode_reg[4];

    // Write Burst Mode
    wire      Write_burst_mode = Mode_reg[9];

    wire      Debug;		// Debug messages : 1 = On; 0 = Off
    wire      Dq_chk           = Sys_clk & Data_in_enable;      // Check setup/hold time for DQ

    reg		[31:0]	mem_d;
    
    event	sdram_r,sdram_w,compare;
    
    
   
   
    assign    Dq               = Dq_reg;                        // DQ buffer

    // Commands Operation
    `define   ACT       0
    `define   NOP       1
    `define   READ      2
    `define   READ_A    3
    `define   WRITE     4
    `define   WRITE_A   5
    `define   PRECH     6
    `define   A_REF     7
    `define   BST       8
    `define   LMR       9

//    // Timing Parameters for -75 (PC133) and CAS Latency = 2
//    parameter tAC  =   8;	//test 6.5
//    parameter tHZ  =   7.0;
//    parameter tOH  =   2.7;
//    parameter tMRD =   2.0;     // 2 Clk Cycles
//    parameter tRAS =  44.0;
//    parameter tRC  =  66.0;
//    parameter tRCD =  20.0;
//    parameter tRP  =  20.0;
//    parameter tRRD =  15.0;
//    parameter tWRa =   7.5;     // A2 Version - Auto precharge mode only (1 Clk + 7.5 ns)
//    parameter tWRp =  0.0;     // A2 Version - Precharge mode only (15 ns)

    // Timing Parameters for -7 (PC143) and CAS Latency = 3
    parameter tAC  =   6.5;	//test 6.5
    parameter tHZ  =   5.5;
    parameter tOH  =   2;
    parameter tMRD =   2.0;     // 2 Clk Cycles
    parameter tRAS =  48.0;
    parameter tRC  =  70.0;
    parameter tRCD =  20.0;
    parameter tRP  =  20.0;
    parameter tRRD =  14.0;
    parameter tWRa =   7.5;     // A2 Version - Auto precharge mode only (1 Clk + 7.5 ns)
    parameter tWRp =  0.0;     // A2 Version - Precharge mode only (15 ns)
    
    // Timing Check variable
    integer   MRD_chk;
    integer   WR_counter [0 : 3];
    time      WR_chk [0 : 3];
    time      RC_chk, RRD_chk;
    time      RAS_chk0, RAS_chk1, RAS_chk2, RAS_chk3;
    time      RCD_chk0, RCD_chk1, RCD_chk2, RCD_chk3;
    time      RP_chk0, RP_chk1, RP_chk2, RP_chk3;

    integer	test_file;
    
    //*****display the command of the sdram**************************************
    
    parameter	Mode_Reg_Set	=4'b0000;
    parameter	Auto_Refresh	=4'b0001;
    parameter	Row_Active	=4'b0011;
    parameter	Pre_Charge	=4'b0010;
    parameter	PreCharge_All	=4'b0010;
    parameter	Write		=4'b0100;
    parameter	Write_Pre	=4'b0100;
    parameter	Read		=4'b0101;
    parameter	Read_Pre	=4'b0101;
    parameter	Burst_Stop	=4'b0110;
    parameter	Nop		=4'b0111;
    parameter	Dsel		=4'b1111;

    wire	[3:0]	sdram_control;
    reg			cke_temp;
    reg		[8*13:1]	sdram_command;
   
    always@(posedge Clk)
	cke_temp<=Cke;

    assign	sdram_control={Cs_n,Ras_n,Cas_n,We_n};

    always@(sdram_control or cke_temp)
	begin
		case(sdram_control)
			Mode_Reg_Set:	sdram_command<="Mode_Reg_Set";
			Auto_Refresh:	sdram_command<="Auto_Refresh";
			Row_Active:	sdram_command<="Row_Active";
			Pre_Charge:	sdram_command<="Pre_Charge";
			Burst_Stop:	sdram_command<="Burst_Stop";
			Dsel:		sdram_command<="Dsel";

			Write:		if(cke_temp==1)
						sdram_command<="Write";
					else
						sdram_command<="Write_suspend";
						
			Read:		if(cke_temp==1)
						sdram_command<="Read";
					else
						sdram_command<="Read_suspend";
						
			Nop:		if(cke_temp==1)
						sdram_command<="Nop";
					else
						sdram_command<="Self_refresh";
						
			default:	sdram_command<="Power_down";
		endcase
	end

    //*****************************************************
    
    initial 
    	begin
		//test_file=$fopen("test_file.txt");
	end

    initial 
    	begin
        Dq_reg = {data_bits{1'bz}};
        {Data_in_enable, Data_out_enable} = 0;
        {Act_b0, Act_b1, Act_b2, Act_b3} = 4'b0000;
        {Pc_b0, Pc_b1, Pc_b2, Pc_b3} = 4'b0000;
        {WR_chk[0], WR_chk[1], WR_chk[2], WR_chk[3]} = 0;
        {WR_counter[0], WR_counter[1], WR_counter[2], WR_counter[3]} = 0;
        {RW_interrupt_read[0], RW_interrupt_read[1], RW_interrupt_read[2], RW_interrupt_read[3]} = 0;
        {RW_interrupt_write[0], RW_interrupt_write[1], RW_interrupt_write[2], RW_interrupt_write[3]} = 0;
        {MRD_chk, RC_chk, RRD_chk} = 0;
        {RAS_chk0, RAS_chk1, RAS_chk2, RAS_chk3} = 0;
        {RCD_chk0, RCD_chk1, RCD_chk2, RCD_chk3} = 0;
        {RP_chk0, RP_chk1, RP_chk2, RP_chk3} = 0;
        $timeformat (-9, 0, " ns", 12);
        //$readmemh("bank0.txt", Bank0);
        //$readmemh("bank1.txt", Bank1);
        //$readmemh("bank2.txt", Bank2);
        //$readmemh("bank3.txt", Bank3);
/*  	
  	 for(dd=0;dd<=mem_sizes;dd=dd+1)
        	begin
        		Bank0[dd]=dd[data_bits - 1 : 0];
        		Bank1[dd]=dd[data_bits - 1 : 0]+1;
        		Bank2[dd]=dd[data_bits - 1 : 0]+2;
        		Bank3[dd]=dd[data_bits - 1 : 0]+3;
        	end
*/        	
  	initial_sdram(0);
  	end
 
        task	initial_sdram; 
 
 		input		data_sign;
 		reg	[3:0]	data_sign;
 	     
       		for(dd=0;dd<=mem_sizes;dd=dd+1)
        	begin
        		mem_d = {data_sign,data_sign,data_sign,data_sign,data_sign,data_sign,data_sign,data_sign};
        		if(data_bits==16)
        			begin
        				Bank0[dd]=mem_d[15:0];
        				Bank1[dd]=mem_d[15:0];
        				Bank2[dd]=mem_d[15:0];
        				Bank3[dd]=mem_d[15:0];
        			end
        		else if(data_bits==32)
        			begin
        				Bank0[dd]=mem_d[31:0];
        				Bank1[dd]=mem_d[31:0];
        				Bank2[dd]=mem_d[31:0];
        				Bank3[dd]=mem_d[31:0];
        			end
        	end	
      	
       		endtask

    // System clock generator
    always
    	begin
       		@(posedge Clk)
       			begin
            			Sys_clk = CkeZ;
            			CkeZ = Cke;
        		end
        	@(negedge Clk) 
        		begin
            			Sys_clk = 1'b0;
        		end
    	end

    always @ (posedge Sys_clk) begin
        // Internal Commamd Pipelined
        Command[0] = Command[1];
        Command[1] = Command[2];
        Command[2] = Command[3];
        Command[3] = `NOP;

        Col_addr[0] = Col_addr[1];
        Col_addr[1] = Col_addr[2];
        Col_addr[2] = Col_addr[3];
        Col_addr[3] = {col_bits{1'b0}};

        Bank_addr[0] = Bank_addr[1];
        Bank_addr[1] = Bank_addr[2];
        Bank_addr[2] = Bank_addr[3];
        Bank_addr[3] = 2'b0;

        Bank_precharge[0] = Bank_precharge[1];
        Bank_precharge[1] = Bank_precharge[2];
        Bank_precharge[2] = Bank_precharge[3];
        Bank_precharge[3] = 2'b0;

        A10_precharge[0] = A10_precharge[1];
        A10_precharge[1] = A10_precharge[2];
        A10_precharge[2] = A10_precharge[3];
        A10_precharge[3] = 1'b0;

        // Dqm pipeline for Read
        Dqm_reg0 = Dqm_reg1;
        Dqm_reg1 = Dqm;

        // Read or Write with Auto Precharge Counter
        if (Auto_precharge[0] == 1'b1) begin
            Count_precharge[0] = Count_precharge[0] + 1;
        end
        if (Auto_precharge[1] == 1'b1) begin
            Count_precharge[1] = Count_precharge[1] + 1;
        end
        if (Auto_precharge[2] == 1'b1) begin
            Count_precharge[2] = Count_precharge[2] + 1;
        end
        if (Auto_precharge[3] == 1'b1) begin
            Count_precharge[3] = Count_precharge[3] + 1;
        end

        // tMRD Counter
        MRD_chk = MRD_chk + 1;

        // tWR Counter for Write
        WR_counter[0] = WR_counter[0] + 1;
        WR_counter[1] = WR_counter[1] + 1;
        WR_counter[2] = WR_counter[2] + 1;
        WR_counter[3] = WR_counter[3] + 1;

        // Auto Refresh
        if (Aref_enable == 1'b1) begin
            if (Debug) $display ("at time %t AREF : Auto Refresh", $time);
            // Auto Refresh to Auto Refresh
            if (($time - RC_chk < tRC)&&Debug) begin
                $display ("at time %t ERROR: tRC violation during Auto Refresh", $time);
            end
            // Precharge to Auto Refresh
            if (($time - RP_chk0 < tRP || $time - RP_chk1 < tRP || $time - RP_chk2 < tRP || $time - RP_chk3 < tRP)&&Debug) begin
                $display ("at time %t ERROR: tRP violation during Auto Refresh", $time);
            end
            // Precharge to Refresh
            if (Pc_b0 == 1'b0 || Pc_b1 == 1'b0 || Pc_b2 == 1'b0 || Pc_b3 == 1'b0) begin
                $display ("at time %t ERROR: All banks must be Precharge before Auto Refresh", $time);
            end
            // Record Current tRC time
            RC_chk = $time;
        end
        
        // Load Mode Register
        if (Mode_reg_enable == 1'b1) begin
            // Decode CAS Latency, Burst Length, Burst Type, and Write Burst Mode
            if (Pc_b0 == 1'b1 && Pc_b1 == 1'b1 && Pc_b2 == 1'b1 && Pc_b3 == 1'b1) begin
                Mode_reg = Addr;
                if (Debug) begin
                    $display ("at time %t LMR  : Load Mode Register", $time);
                    // CAS Latency
                    if (Addr[6 : 4] == 3'b010)
                        $display ("                            CAS Latency      = 2");
                    else if (Addr[6 : 4] == 3'b011)
                        $display ("                            CAS Latency      = 3");
                    else
                        $display ("                            CAS Latency      = Reserved");
                    // Burst Length
                    if (Addr[2 : 0] == 3'b000)
                        $display ("                            Burst Length     = 1");
                    else if (Addr[2 : 0] == 3'b001)
                        $display ("                            Burst Length     = 2");
                    else if (Addr[2 : 0] == 3'b010)
                        $display ("                            Burst Length     = 4");
                    else if (Addr[2 : 0] == 3'b011)
                        $display ("                            Burst Length     = 8");
                    else if (Addr[3 : 0] == 4'b0111)
                        $display ("                            Burst Length     = Full");
                    else
                        $display ("                            Burst Length     = Reserved");
                    // Burst Type
                    if (Addr[3] == 1'b0)
                        $display ("                            Burst Type       = Sequential");
                    else if (Addr[3] == 1'b1)
                        $display ("                            Burst Type       = Interleaved");
                    else
                        $display ("                            Burst Type       = Reserved");
                    // Write Burst Mode
                    if (Addr[9] == 1'b0)
                        $display ("                            Write Burst Mode = Programmed Burst Length");
                    else if (Addr[9] == 1'b1)
                        $display ("                            Write Burst Mode = Single Location Access");
                    else
                        $display ("                            Write Burst Mode = Reserved");
                end
            end else begin
                $display ("at time %t ERROR: all banks must be Precharge before Load Mode Register", $time);
            end
            // REF to LMR
            if ($time - RC_chk < tRC) begin
                $display ("at time %t ERROR: tRC violation during Load Mode Register", $time);
            end
            // LMR to LMR
            if (MRD_chk < tMRD) begin
                $display ("at time %t ERROR: tMRD violation during Load Mode Register", $time);
            end
            MRD_chk = 0;
        end
        
        // Active Block (Latch Bank Address and Row Address)
        if (Active_enable == 1'b1) begin
            if (Ba == 2'b00 && Pc_b0 == 1'b1) begin
                {Act_b0, Pc_b0} = 2'b10;
                B0_row_addr = Addr [addr_bits - 1 : 0];
                RCD_chk0 = $time;
                RAS_chk0 = $time;
                if (Debug) $display ("at time %t ACT  : Bank = 0 Row = %d", $time, Addr);
                // Precharge to Activate Bank 0
                if ($time - RP_chk0 < tRP) begin
                    $display ("at time %t ERROR: tRP violation during Activate bank 0", $time);
                end
            end else if (Ba == 2'b01 && Pc_b1 == 1'b1) begin
                {Act_b1, Pc_b1} = 2'b10;
                B1_row_addr = Addr [addr_bits - 1 : 0];
                RCD_chk1 = $time;
                RAS_chk1 = $time;
                if (Debug) $display ("at time %t ACT  : Bank = 1 Row = %d", $time, Addr);
                // Precharge to Activate Bank 1
                if ($time - RP_chk1 < tRP) begin
                    $display ("at time %t ERROR: tRP violation during Activate bank 1", $time);
                end
            end else if (Ba == 2'b10 && Pc_b2 == 1'b1) begin
                {Act_b2, Pc_b2} = 2'b10;
                B2_row_addr = Addr [addr_bits - 1 : 0];
                RCD_chk2 = $time;
                RAS_chk2 = $time;
                if (Debug) $display ("at time %t ACT  : Bank = 2 Row = %d", $time, Addr);
                // Precharge to Activate Bank 2
                if ($time - RP_chk2 < tRP) begin
                    $display ("at time %t ERROR: tRP violation during Activate bank 2", $time);
                end
            end else if (Ba == 2'b11 && Pc_b3 == 1'b1) begin
                {Act_b3, Pc_b3} = 2'b10;
                B3_row_addr = Addr [addr_bits - 1 : 0];
                RCD_chk3 = $time;
                RAS_chk3 = $time;
                if (Debug) $display ("at time %t ACT  : Bank = 3 Row = %d", $time, Addr);
                // Precharge to Activate Bank 3
                if ($time - RP_chk3 < tRP) begin
                    $display ("at time %t ERROR: tRP violation during Activate bank 3", $time);
                end
            end else if (Ba == 2'b00 && Pc_b0 == 1'b0) begin
                $display ("at time %t ERROR: Bank 0 is not Precharged.", $time);
            end else if (Ba == 2'b01 && Pc_b1 == 1'b0) begin
                $display ("at time %t ERROR: Bank 1 is not Precharged.", $time);
            end else if (Ba == 2'b10 && Pc_b2 == 1'b0) begin
                $display ("at time %t ERROR: Bank 2 is not Precharged.", $time);
            end else if (Ba == 2'b11 && Pc_b3 == 1'b0) begin
                $display ("at time %t ERROR: Bank 3 is not Precharged.", $time);
            end
            // Active Bank A to Active Bank B
            if ((Previous_bank != Ba) && ($time - RRD_chk < tRRD)) begin
                $display ("at time %t ERROR: tRRD violation during Activate bank = %d", $time, Ba);
            end
            // Load Mode Register to Active
            if (MRD_chk < tMRD ) begin
                $display ("at time %t ERROR: tMRD violation during Activate bank = %d", $time, Ba);
            end
            // Auto Refresh to Activate
            if (($time - RC_chk < tRC)&&Debug) begin
                $display ("at time %t ERROR: tRC violation during Activate bank = %d", $time, Ba);
            end
            // Record variables for checking violation
            RRD_chk = $time;
            Previous_bank = Ba;
        end
        
        // Precharge Block
        if (Prech_enable == 1'b1) begin
            if (Addr[10] == 1'b1) begin
                {Pc_b0, Pc_b1, Pc_b2, Pc_b3} = 4'b1111;
                {Act_b0, Act_b1, Act_b2, Act_b3} = 4'b0000;
                RP_chk0 = $time;
                RP_chk1 = $time;
                RP_chk2 = $time;
                RP_chk3 = $time;
                if (Debug) $display ("at time %t PRE  : Bank = ALL",$time);
                // Activate to Precharge all banks
                if (($time - RAS_chk0 < tRAS) || ($time - RAS_chk1 < tRAS) ||
                    ($time - RAS_chk2 < tRAS) || ($time - RAS_chk3 < tRAS)) begin
                    $display ("at time %t ERROR: tRAS violation during Precharge all bank", $time);
                end
                // tWR violation check for write
                if (($time - WR_chk[0] < tWRp) || ($time - WR_chk[1] < tWRp) ||
                    ($time - WR_chk[2] < tWRp) || ($time - WR_chk[3] < tWRp)) begin
                    $display ("at time %t ERROR: tWR violation during Precharge all bank", $time);
                end
            end else if (Addr[10] == 1'b0) begin
                if (Ba == 2'b00) begin
                    {Pc_b0, Act_b0} = 2'b10;
                    RP_chk0 = $time;
                    if (Debug) $display ("at time %t PRE  : Bank = 0",$time);
                    // Activate to Precharge Bank 0
                    if ($time - RAS_chk0 < tRAS) begin
                        $display ("at time %t ERROR: tRAS violation during Precharge bank 0", $time);
                    end
                end else if (Ba == 2'b01) begin
                    {Pc_b1, Act_b1} = 2'b10;
                    RP_chk1 = $time;
                    if (Debug) $display ("at time %t PRE  : Bank = 1",$time);
                    // Activate to Precharge Bank 1
                    if ($time - RAS_chk1 < tRAS) begin
                        $display ("at time %t ERROR: tRAS violation during Precharge bank 1", $time);
                    end
                end else if (Ba == 2'b10) begin
                    {Pc_b2, Act_b2} = 2'b10;
                    RP_chk2 = $time;
                    if (Debug) $display ("at time %t PRE  : Bank = 2",$time);
                    // Activate to Precharge Bank 2
                    if ($time - RAS_chk2 < tRAS) begin
                        $display ("at time %t ERROR: tRAS violation during Precharge bank 2", $time);
                    end
                end else if (Ba == 2'b11) begin
                    {Pc_b3, Act_b3} = 2'b10;
                    RP_chk3 = $time;
                    if (Debug) $display ("at time %t PRE  : Bank = 3",$time);
                    // Activate to Precharge Bank 3
                    if ($time - RAS_chk3 < tRAS) begin
                        $display ("at time %t ERROR: tRAS violation during Precharge bank 3", $time);
                    end
                end
                // tWR violation check for write
                if ($time - WR_chk[Ba] < tWRp) begin
                    $display ("at time %t ERROR: tWR violation during Precharge bank %d", $time, Ba);
                end
            end
            // Terminate a Write Immediately (if same bank or all banks)
            if (Data_in_enable == 1'b1 && (Bank == Ba || Addr[10] == 1'b1)) begin
                Data_in_enable = 1'b0;
            end
            // Precharge Command Pipeline for Read
            if (Cas_latency_3 == 1'b1) begin
                Command[2] = `PRECH;
                Bank_precharge[2] = Ba;
                A10_precharge[2] = Addr[10];
            end else if (Cas_latency_2 == 1'b1) begin
                Command[1] = `PRECH;
                Bank_precharge[1] = Ba;
                A10_precharge[1] = Addr[10];
            end
        end
        
        // Burst terminate
        if (Burst_term == 1'b1) begin
            // Terminate a Write Immediately
            if (Data_in_enable == 1'b1) begin
                Data_in_enable = 1'b0;
            end
            // Terminate a Read Depend on CAS Latency
            if (Cas_latency_3 == 1'b1) begin
                Command[2] = `BST;
            end else if (Cas_latency_2 == 1'b1) begin
                Command[1] = `BST;
            end
            if (Debug) $display ("at time %t BST  : Burst Terminate",$time);
        end
        
        // Read, Write, Column Latch
        if (Read_enable == 1'b1 || Write_enable == 1'b1) begin
            // Check to see if bank is open (ACT)
            if ((Ba == 2'b00 && Pc_b0 == 1'b1) || (Ba == 2'b01 && Pc_b1 == 1'b1) ||
                (Ba == 2'b10 && Pc_b2 == 1'b1) || (Ba == 2'b11 && Pc_b3 == 1'b1)) begin
                $display("at time %t ERROR: Cannot Read or Write - Bank %d is not Activated", $time, Ba);
            end
            // Activate to Read or Write
            if ((Ba == 2'b00) && ($time - RCD_chk0 < tRCD))
                $display("at time %t ERROR: tRCD violation during Read or Write to Bank 0", $time);
            if ((Ba == 2'b01) && ($time - RCD_chk1 < tRCD))
                $display("at time %t ERROR: tRCD violation during Read or Write to Bank 1", $time);
            if ((Ba == 2'b10) && ($time - RCD_chk2 < tRCD))
                $display("at time %t ERROR: tRCD violation during Read or Write to Bank 2", $time);
            if ((Ba == 2'b11) && ($time - RCD_chk3 < tRCD))
                $display("at time %t ERROR: tRCD violation during Read or Write to Bank 3", $time);
            // Read Command
            if (Read_enable == 1'b1) begin
                // CAS Latency pipeline
                if (Cas_latency_3 == 1'b1) begin
                    if (Addr[10] == 1'b1) begin
                        Command[2] = `READ_A;
                    end else begin
                        Command[2] = `READ;
                    end
                    Col_addr[2] = Addr;
                    Bank_addr[2] = Ba;
                end else if (Cas_latency_2 == 1'b1) begin
                    if (Addr[10] == 1'b1) begin
                        Command[1] = `READ_A;
                    end else begin
                        Command[1] = `READ;
                    end
                    Col_addr[1] = Addr;
                    Bank_addr[1] = Ba;
                end

                // Read interrupt Write (terminate Write immediately)
                if (Data_in_enable == 1'b1) begin
                    Data_in_enable = 1'b0;
                end

            // Write Command
            end else if (Write_enable == 1'b1) begin
                if (Addr[10] == 1'b1) begin
                    Command[0] = `WRITE_A;
                end else begin
                    Command[0] = `WRITE;
                end
                Col_addr[0] = Addr;
                Bank_addr[0] = Ba;

                // Write interrupt Write (terminate Write immediately)
                if (Data_in_enable == 1'b1) begin
                    Data_in_enable = 1'b0;
                end

                // Write interrupt Read (terminate Read immediately)
                if (Data_out_enable == 1'b1) begin
                    Data_out_enable = 1'b0;
                end
            end

            // Interrupting a Write with Autoprecharge
            if (Auto_precharge[Bank] == 1'b1 && Write_precharge[Bank] == 1'b1) begin
                RW_interrupt_write[Bank] = 1'b1;
                if (Debug) $display ("at time %t NOTE : Read/Write Bank %d interrupt Write Bank %d with Autoprecharge", $time, Ba, Bank);
            end

            // Interrupting a Read with Autoprecharge
            if (Auto_precharge[Bank] == 1'b1 && Read_precharge[Bank] == 1'b1) begin
                RW_interrupt_read[Bank] = 1'b1;
                if (Debug) $display ("at time %t NOTE : Read/Write Bank %d interrupt Read Bank %d with Autoprecharge", $time, Ba, Bank);
            end

            // Read or Write with Auto Precharge
            if (Addr[10] == 1'b1) begin
                Auto_precharge[Ba] = 1'b1;
                Count_precharge[Ba] = 0;
                if (Read_enable == 1'b1) begin
                    Read_precharge[Ba] = 1'b1;
                end else if (Write_enable == 1'b1) begin
                    Write_precharge[Ba] = 1'b1;
                end
            end
        end

        //  Read with Auto Precharge Calculation
        //      The device start internal precharge:
        //          1.  CAS Latency - 1 cycles before last burst
        //      and 2.  Meet minimum tRAS requirement
        //       or 3.  Interrupt by a Read or Write (with or without AutoPrecharge)
        if ((Auto_precharge[0] == 1'b1) && (Read_precharge[0] == 1'b1)) begin
            if ((($time - RAS_chk0 >= tRAS) &&                                                      // Case 2
                ((Burst_length_1 == 1'b1 && Count_precharge[0] >= 1) ||                             // Case 1
                 (Burst_length_2 == 1'b1 && Count_precharge[0] >= 2) ||
                 (Burst_length_4 == 1'b1 && Count_precharge[0] >= 4) ||
                 (Burst_length_8 == 1'b1 && Count_precharge[0] >= 8))) ||
                 (RW_interrupt_read[0] == 1'b1)) begin                                              // Case 3
                    Pc_b0 = 1'b1;
                    Act_b0 = 1'b0;
                    RP_chk0 = $time;
                    Auto_precharge[0] = 1'b0;
                    Read_precharge[0] = 1'b0;
                    RW_interrupt_read[0] = 1'b0;
                    if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 0", $time);
            end
        end
        if ((Auto_precharge[1] == 1'b1) && (Read_precharge[1] == 1'b1)) begin
            if ((($time - RAS_chk1 >= tRAS) &&
                ((Burst_length_1 == 1'b1 && Count_precharge[1] >= 1) || 
                 (Burst_length_2 == 1'b1 && Count_precharge[1] >= 2) ||
                 (Burst_length_4 == 1'b1 && Count_precharge[1] >= 4) ||
                 (Burst_length_8 == 1'b1 && Count_precharge[1] >= 8))) ||
                 (RW_interrupt_read[1] == 1'b1)) begin
                    Pc_b1 = 1'b1;
                    Act_b1 = 1'b0;
                    RP_chk1 = $time;
                    Auto_precharge[1] = 1'b0;
                    Read_precharge[1] = 1'b0;
                    RW_interrupt_read[1] = 1'b0;
                    if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 1", $time);
            end
        end
        if ((Auto_precharge[2] == 1'b1) && (Read_precharge[2] == 1'b1)) begin
            if ((($time - RAS_chk2 >= tRAS) &&
                ((Burst_length_1 == 1'b1 && Count_precharge[2] >= 1) || 
                 (Burst_length_2 == 1'b1 && Count_precharge[2] >= 2) ||
                 (Burst_length_4 == 1'b1 && Count_precharge[2] >= 4) ||
                 (Burst_length_8 == 1'b1 && Count_precharge[2] >= 8))) ||
                 (RW_interrupt_read[2] == 1'b1)) begin
                    Pc_b2 = 1'b1;
                    Act_b2 = 1'b0;
                    RP_chk2 = $time;
                    Auto_precharge[2] = 1'b0;
                    Read_precharge[2] = 1'b0;
                    RW_interrupt_read[2] = 1'b0;
                    if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 2", $time);
            end
        end
        if ((Auto_precharge[3] == 1'b1) && (Read_precharge[3] == 1'b1)) begin
            if ((($time - RAS_chk3 >= tRAS) &&
                ((Burst_length_1 == 1'b1 && Count_precharge[3] >= 1) || 
                 (Burst_length_2 == 1'b1 && Count_precharge[3] >= 2) ||
                 (Burst_length_4 == 1'b1 && Count_precharge[3] >= 4) ||
                 (Burst_length_8 == 1'b1 && Count_precharge[3] >= 8))) ||
                 (RW_interrupt_read[3] == 1'b1)) begin
                    Pc_b3 = 1'b1;
                    Act_b3 = 1'b0;
                    RP_chk3 = $time;
                    Auto_precharge[3] = 1'b0;
                    Read_precharge[3] = 1'b0;
                    RW_interrupt_read[3] = 1'b0;
                    if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 3", $time);
            end
        end

        // Internal Precharge or Bst
        if (Command[0] == `PRECH) begin                         // Precharge terminate a read with same bank or all banks
            if (Bank_precharge[0] == Bank || A10_precharge[0] == 1'b1) begin
                if (Data_out_enable == 1'b1) begin
                    Data_out_enable = 1'b0;
                end
            end
        end else if (Command[0] == `BST) begin                  // BST terminate a read to current bank
            if (Data_out_enable == 1'b1) begin
                Data_out_enable = 1'b0;
            end
        end

        if (Data_out_enable == 1'b0) begin
            Dq_reg <= #tOH {data_bits{1'bz}};
        end

        // Detect Read or Write command
        if (Command[0] == `READ || Command[0] == `READ_A) begin
            Bank = Bank_addr[0];
            Col = Col_addr[0];
            Col_brst = Col_addr[0];
            if (Bank_addr[0] == 2'b00) begin
                Row = B0_row_addr;
            end else if (Bank_addr[0] == 2'b01) begin
                Row = B1_row_addr;
            end else if (Bank_addr[0] == 2'b10) begin
                Row = B2_row_addr;
            end else if (Bank_addr[0] == 2'b11) begin
                Row = B3_row_addr;
            end
            Burst_counter = 0;
            Data_in_enable = 1'b0;
            Data_out_enable = 1'b1;
        end else if (Command[0] == `WRITE || Command[0] == `WRITE_A) begin
            Bank = Bank_addr[0];
            Col = Col_addr[0];
            Col_brst = Col_addr[0];
            if (Bank_addr[0] == 2'b00) begin
                Row = B0_row_addr;
            end else if (Bank_addr[0] == 2'b01) begin
                Row = B1_row_addr;
            end else if (Bank_addr[0] == 2'b10) begin
                Row = B2_row_addr;
            end else if (Bank_addr[0] == 2'b11) begin
                Row = B3_row_addr;
            end
            Burst_counter = 0;
            Data_in_enable = 1'b1;
            Data_out_enable = 1'b0;
        end

        // DQ buffer (Driver/Receiver)
        if (Data_in_enable == 1'b1) begin                                   // Writing Data to Memory
            // Array buffer
            if (Bank == 2'b00) Dq_dqm [data_bits - 1  : 0] = Bank0 [{Row, Col}];
            if (Bank == 2'b01) Dq_dqm [data_bits - 1  : 0] = Bank1 [{Row, Col}];
            if (Bank == 2'b10) Dq_dqm [data_bits - 1  : 0] = Bank2 [{Row, Col}];
            if (Bank == 2'b11) Dq_dqm [data_bits - 1  : 0] = Bank3 [{Row, Col}];
            // Dqm operation
            if (Dqm[0] == 1'b0) Dq_dqm [ 7 : 0] = Dq [ 7 : 0];
            if (Dqm[1] == 1'b0) Dq_dqm [15 : 8] = Dq [15 : 8];
            //if (Dqm[2] == 1'b0) Dq_dqm [23 : 16] = Dq [23 : 16];
           // if (Dqm[3] == 1'b0) Dq_dqm [31 : 24] = Dq [31 : 24];
            // Write to memory
            if (Bank == 2'b00) Bank0 [{Row, Col}] = Dq_dqm [data_bits - 1  : 0];
            if (Bank == 2'b01) Bank1 [{Row, Col}] = Dq_dqm [data_bits - 1  : 0];
            if (Bank == 2'b10) Bank2 [{Row, Col}] = Dq_dqm [data_bits - 1  : 0];
            if (Bank == 2'b11) Bank3 [{Row, Col}] = Dq_dqm [data_bits - 1  : 0];
            if (Bank == 2'b11 && Row==10'h3 && Col[7:4]==4'h4)
            	$display("at time %t WRITE: Bank = %d Row = %d, Col = %d, Data = Hi-Z due to DQM", $time, Bank, Row, Col);
            //$fdisplay(test_file,"bank:%h	row:%h	col:%h	write:%h",Bank,Row,Col,Dq_dqm);
            // Output result
            if (Dqm == 4'b1111) begin
                if (Debug) $display("at time %t WRITE: Bank = %d Row = %d, Col = %d, Data = Hi-Z due to DQM", $time, Bank, Row, Col);
            end else begin
                if (Debug) $display("at time %t WRITE: Bank = %d Row = %d, Col = %d, Data = %d, Dqm = %b", $time, Bank, Row, Col, Dq_dqm, Dqm);
                // Record tWR time and reset counter
                WR_chk [Bank] = $time;
                WR_counter [Bank] = 0;
            end
            // Advance burst counter subroutine
            #tHZ Burst;
        end else if (Data_out_enable == 1'b1) begin                         // Reading Data from Memory
        	//$display("%h	,	%h,	%h",Bank0,Row,Col);
            // Array buffer
            if (Bank == 2'b00) Dq_dqm [data_bits - 1  : 0] = Bank0 [{Row, Col}];
            if (Bank == 2'b01) Dq_dqm [data_bits - 1  : 0] = Bank1 [{Row, Col}];
            if (Bank == 2'b10) Dq_dqm [data_bits - 1  : 0] = Bank2 [{Row, Col}];
            if (Bank == 2'b11) Dq_dqm [data_bits - 1  : 0] = Bank3 [{Row, Col}];
            	
            // Dqm operation
            if (Dqm_reg0[0] == 1'b1) Dq_dqm [ 7 : 0] = 8'bz;
            if (Dqm_reg0[1] == 1'b1) Dq_dqm [15 : 8] = 8'bz;
            if (Dqm_reg0[2] == 1'b1) Dq_dqm [23 : 16] = 8'bz;
            if (Dqm_reg0[3] == 1'b1) Dq_dqm [31 : 24] = 8'bz;
            // Display result
            Dq_reg [data_bits - 1  : 0] = #tAC Dq_dqm [data_bits - 1  : 0];
            if (Dqm_reg0 == 4'b1111) begin
                if (Debug) $display("at time %t READ : Bank = %d Row = %d, Col = %d, Data = Hi-Z due to DQM", $time, Bank, Row, Col);
            end else begin
                if (Debug) $display("at time %t READ : Bank = %d Row = %d, Col = %d, Data = %d, Dqm = %b", $time, Bank, Row, Col, Dq_reg, Dqm_reg0);
            end
            // Advance burst counter subroutine
            Burst;
        end
    end

    //  Write with Auto Precharge Calculation
    //      The device start internal precharge:
    //          1.  tWR Clock after last burst
    //      and 2.  Meet minimum tRAS requirement
    //       or 3.  Interrupt by a Read or Write (with or without AutoPrecharge)
    always @ (WR_counter[0]) begin
        if ((Auto_precharge[0] == 1'b1) && (Write_precharge[0] == 1'b1)) begin
            if ((($time - RAS_chk0 >= tRAS) &&                                                          // Case 2
               (((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [0] >= 1) ||   // Case 1
                 (Burst_length_2 == 1'b1 && Count_precharge [0] >= 2) ||
                 (Burst_length_4 == 1'b1 && Count_precharge [0] >= 4) ||
                 (Burst_length_8 == 1'b1 && Count_precharge [0] >= 8))) ||
                 (RW_interrupt_write[0] == 1'b1 && WR_counter[0] >= 2)) begin                           // Case 3 (stop count when interrupt)
                    Auto_precharge[0] = 1'b0;
                    Write_precharge[0] = 1'b0;
                    RW_interrupt_write[0] = 1'b0;
                    #tWRa;                          // Wait for tWR
                    Pc_b0 = 1'b1;
                    Act_b0 = 1'b0;
                    RP_chk0 = $time;
                    if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 0", $time);
            end
        end
    end
    always @ (WR_counter[1]) begin
        if ((Auto_precharge[1] == 1'b1) && (Write_precharge[1] == 1'b1)) begin
            if ((($time - RAS_chk1 >= tRAS) &&
               (((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [1] >= 1) || 
                 (Burst_length_2 == 1'b1 && Count_precharge [1] >= 2) ||
                 (Burst_length_4 == 1'b1 && Count_precharge [1] >= 4) ||
                 (Burst_length_8 == 1'b1 && Count_precharge [1] >= 8))) ||
                 (RW_interrupt_write[1] == 1'b1 && WR_counter[1] >= 2)) begin
                    Auto_precharge[1] = 1'b0;
                    Write_precharge[1] = 1'b0;
                    RW_interrupt_write[1] = 1'b0;
                    #tWRa;                          // Wait for tWR
                    Pc_b1 = 1'b1;
                    Act_b1 = 1'b0;
                    RP_chk1 = $time;
                    if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 1", $time);
            end
        end
    end
    always @ (WR_counter[2]) begin
        if ((Auto_precharge[2] == 1'b1) && (Write_precharge[2] == 1'b1)) begin
            if ((($time - RAS_chk2 >= tRAS) &&
               (((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [2] >= 1) || 
                 (Burst_length_2 == 1'b1 && Count_precharge [2] >= 2) ||
                 (Burst_length_4 == 1'b1 && Count_precharge [2] >= 4) ||
                 (Burst_length_8 == 1'b1 && Count_precharge [2] >= 8))) ||
                 (RW_interrupt_write[2] == 1'b1 && WR_counter[2] >= 2)) begin
                    Auto_precharge[2] = 1'b0;
                    Write_precharge[2] = 1'b0;
                    RW_interrupt_write[2] = 1'b0;
                    #tWRa;                          // Wait for tWR
                    Pc_b2 = 1'b1;
                    Act_b2 = 1'b0;
                    RP_chk2 = $time;
                    if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 2", $time);
            end
        end
    end
    always @ (WR_counter[3]) begin
        if ((Auto_precharge[3] == 1'b1) && (Write_precharge[3] == 1'b1)) begin
            if ((($time - RAS_chk3 >= tRAS) &&
               (((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [3] >= 1) || 
                 (Burst_length_2 == 1'b1 && Count_precharge [3] >= 2) ||
                 (Burst_length_4 == 1'b1 && Count_precharge [3] >= 4) ||
                 (Burst_length_8 == 1'b1 && Count_precharge [3] >= 8))) ||
                 (RW_interrupt_write[3] == 1'b1 && WR_counter[3] >= 2)) begin
                    Auto_precharge[3] = 1'b0;
                    Write_precharge[3] = 1'b0;
                    RW_interrupt_write[3] = 1'b0;
                    #tWRa;                          // Wait for tWR
                    Pc_b3 = 1'b1;
                    Act_b3 = 1'b0;
                    RP_chk3 = $time;
                    if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 3", $time);
            end
        end
    end

    task Burst;
        begin
            // Advance Burst Counter
            Burst_counter = Burst_counter + 1;

            // Burst Type
            if (Mode_reg[3] == 1'b0) begin                                  // Sequential Burst
                Col_temp = Col + 1;
            end else if (Mode_reg[3] == 1'b1) begin                         // Interleaved Burst
                Col_temp[2] =  Burst_counter[2] ^  Col_brst[2];
                Col_temp[1] =  Burst_counter[1] ^  Col_brst[1];
                Col_temp[0] =  Burst_counter[0] ^  Col_brst[0];
            end

            // Burst Length
            if (Burst_length_2) begin                                       // Burst Length = 2
                Col [0] = Col_temp [0];
            end else if (Burst_length_4) begin                              // Burst Length = 4
                Col [1 : 0] = Col_temp [1 : 0];
            end else if (Burst_length_8) begin                              // Burst Length = 8
                Col [2 : 0] = Col_temp [2 : 0];
            end else begin                                                  // Burst Length = FULL
                Col = Col_temp;
            end

            // Burst Read Single Write            
            if (Write_burst_mode == 1'b1) begin
                Data_in_enable = 1'b0;
            end

            // Data Counter
            if (Burst_length_1 == 1'b1) begin
                if (Burst_counter >= 1) begin
                    Data_in_enable = 1'b0;
                    Data_out_enable = 1'b0;
                end
            end else if (Burst_length_2 == 1'b1) begin
                if (Burst_counter >= 2) begin
                    Data_in_enable = 1'b0;
                    Data_out_enable = 1'b0;
                end
            end else if (Burst_length_4 == 1'b1) begin
                if (Burst_counter >= 4) begin
                    Data_in_enable = 1'b0;
                    Data_out_enable = 1'b0;
                end
            end else if (Burst_length_8 == 1'b1) begin
                if (Burst_counter >= 8) begin
                    Data_in_enable = 1'b0;
                    Data_out_enable = 1'b0;
                end
            end
        end
    endtask
    
    //**********************将SDRAM内的数据直接输出到外部文件*******************************//

/*    
   integer	sdram_data,ind;


    always@(sdram_r)
	begin
		   sdram_data=$fopen("sdram_data.txt");
		   $display("Sdram dampout begin ",sdram_data);
//		   $fdisplay(sdram_data,"Bank0:");
		   for(ind=0;ind<=mem_sizes;ind=ind+1)
		            $fdisplay(sdram_data,"%h	%b",ind,Bank0[ind]);
//		   $fdisplay(sdram_data,"Bank1:");
		   for(ind=0;ind<=mem_sizes;ind=ind+1)
		            $fdisplay(sdram_data,"%h	%b",ind,Bank1[ind]);
//		   $fdisplay(sdram_data,"Bank2:");
		   for(ind=0;ind<=mem_sizes;ind=ind+1)
		            $fdisplay(sdram_data,"%h	%b",ind,Bank2[ind]);
//	           $fdisplay(sdram_data,"Bank3:");
		   for(ind=0;ind<=mem_sizes;ind=ind+1)
		            $fdisplay(sdram_data,"%h	%b",ind,Bank3[ind]);
		  		    	    	    
		  $fclose("sdram_data.txt");        
	  //->compare;
	  end        
*/
    integer	sdram_data,sdram_mem;
    reg	[23:0]	aa,cc;
    reg	[18:0]	bb,ee;
    
    always@(sdram_r)
	begin
		   $display("Sdram dampout begin ",$realtime);
		   sdram_data=$fopen("sdram_data.txt");
		   for(aa=0;aa<4*(mem_sizes+1);aa=aa+1)
		   	begin
		   	bb=aa[18:0];
			if(aa<=mem_sizes)
				$fdisplay(sdram_data,"%0d	%0h",aa,Bank0[bb]);
			else if(aa<=2*mem_sizes+1)
		            	$fdisplay(sdram_data,"%0d	%0h",aa,Bank1[bb]);
			else if(aa<=3*mem_sizes+2)
				$fdisplay(sdram_data,"%0d	%0h",aa,Bank2[bb]);
			else
				$fdisplay(sdram_data,"%0d	%0h",aa,Bank3[bb]);
		  	end	    	    	    
		  $fclose("sdram_data.txt"); 
		  
		  sdram_mem=$fopen("sdram_mem.txt");
		  for(cc=0;cc<4*(mem_sizes+1);cc=cc+1)
		  	begin
		   	ee=cc[18:0];
			if(cc<=mem_sizes)
				$fdisplay(sdram_mem,"%0h",Bank0[ee]);
			else if(cc<=2*mem_sizes+1)
		            	$fdisplay(sdram_mem,"%0h",Bank1[ee]);
			else if(cc<=3*mem_sizes+2)
				$fdisplay(sdram_mem,"%0h",Bank2[ee]);
			else
				$fdisplay(sdram_mem,"%0h",Bank3[ee]);
		  	end	    	    	    
		  $fclose("sdram_mem.txt");        
	 
	  end        



//    // Timing Parameters for -75 (PC133) and CAS Latency = 2
//    specify
//        specparam
////                    tAH  =  0.8,                                        // Addr, Ba Hold Time
////                    tAS  =  1.5,                                        // Addr, Ba Setup Time
////                    tCH  =  2.5,                                        // Clock High-Level Width
////                    tCL  =  2.5,                                        // Clock Low-Level Width
//////                    tCK  = 10.0,                                       // Clock Cycle Time  100mhz
//////                    tCK  = 7.5,    					// Clock Cycle Time  133mhz
////                    tCK  =  7,                				// Clock Cycle Time  143mhz
////                    tDH  =  0.8,                                        // Data-in Hold Time
////                    tDS  =  1.5,                                        // Data-in Setup Time
////                    tCKH =  0.8,                                        // CKE Hold  Time
////                    tCKS =  1.5,                                        // CKE Setup Time
////                    tCMH =  0.8,                                        // CS#, RAS#, CAS#, WE#, DQM# Hold  Time
////                    tCMS =  1.5;                                        // CS#, RAS#, CAS#, WE#, DQM# Setup Time
//                    tAH  =  1,                                        // Addr, Ba Hold Time
//                    tAS  =  1.5,                                        // Addr, Ba Setup Time
//                    tCH  =  1,                                        // Clock High-Level Width
//                    tCL  =  3,                                        // Clock Low-Level Width
////                    tCK  = 10.0,                                       // Clock Cycle Time  100mhz
////                    tCK  = 7.5,    					// Clock Cycle Time  133mhz
//                    tCK  =  7,                				// Clock Cycle Time  143mhz
//                    tDH  =  1,                                        // Data-in Hold Time
//                    tDS  =  2,                                        // Data-in Setup Time
//                    tCKH =  1,                                        // CKE Hold  Time
//                    tCKS =  2,                                        // CKE Setup Time
//                    tCMH =  0.8,                                        // CS#, RAS#, CAS#, WE#, DQM# Hold  Time
//                    tCMS =  1.5;                                        // CS#, RAS#, CAS#, WE#, DQM# Setup Time
//        $width    (posedge Clk,           tCH);
//        $width    (negedge Clk,           tCL);
//        $period   (negedge Clk,           tCK);
//        $period   (posedge Clk,           tCK);
//        $setuphold(posedge Clk,    Cke,   tCKS, tCKH);
//        $setuphold(posedge Clk,    Cs_n,  tCMS, tCMH);
//        $setuphold(posedge Clk,    Cas_n, tCMS, tCMH);
//        $setuphold(posedge Clk,    Ras_n, tCMS, tCMH);
//        $setuphold(posedge Clk,    We_n,  tCMS, tCMH);
//        $setuphold(posedge Clk,    Addr,  tAS,  tAH);
//        $setuphold(posedge Clk,    Ba,    tAS,  tAH);
//        $setuphold(posedge Clk,    Dqm,   tCMS, tCMH);
//        $setuphold(posedge Dq_chk, Dq,    tDS,  tDH);
//    endspecify

endmodule


该模块是官方提供的,大家不需要太在意,就把该模块想想成一块SDRAM就可以了,该模块里面的数据可以根据具体的SDRAM型号进行配置,这点在顶层测试代码中已经给出重配置的方式。

仿真结果测试

仿真结果如下:
基于FPGA的SDRAM控制器设计(2)_第5张图片
这里Kevin老师说自刷新模块之前不需要预充电命令,因为读写命令的之前都有自刷新命令,但是如果SDRAM既不执行读操作也不执行写操作的情况下,等待15us,那么自刷新命令之前就没有预充电命令,所以
我认为自刷新模块还是需要预充电命令的。

参考文献

[1]、开源骚客

总结

创作不易,认为文章有帮助的同学们可以关注点赞支持。(工程也都在群中)对文章有什么看法或者需要更近一步交流的同学,可以加入下面的群:
在这里插入图片描述

你可能感兴趣的:(FPGA,fpga,verilog)