NO.64——Python实现深度优先搜索DFS

        深度优先搜索的时间复杂度与节点总数有关,如果是满二叉树,最后一层的节点数是b^{h}个,其中b为brantching,h为hight。节点总数为b+b^{2}+b^{3}+...b^{h} ,因此时间复杂度是O(b^{h})。 

        空间复杂度相比广度优先搜索要小,为O(bh)

Illustrating:

注:图中有错,弹出4后并不弹出2,直接压入5

NO.64——Python实现深度优先搜索DFS_第1张图片

NO.64——Python实现深度优先搜索DFS_第2张图片

 

To do so:

def tree_depth_search_for_vis(problem):
    """Search through the successors of a problem to find a goal.
    The argument frontier should be an empty queue.
    Don't worry about repeated paths to a state. [Figure 3.7]"""
    
    # we use these two variables at the time of visualisations
    iterations = 0
    all_node_colors = []
    node_colors = {k : 'white' for k in problem.graph.nodes()}
    
    #Adding first node to the stack
    #用[]表示栈
    frontier = [Node(problem.initial)]
    
    node_colors[Node(problem.initial).state] = "orange"
    iterations += 1
    all_node_colors.append(dict(node_colors))
    
    while frontier:
        #Popping first node of stack
        node = frontier.pop()
        
        # modify the currently searching node to red
        node_colors[node.state] = "red"
        iterations += 1
        all_node_colors.append(dict(node_colors))
        
        if problem.goal_test(node.state):
            # modify goal node to green after reaching the goal
            node_colors[node.state] = "green"
            iterations += 1
            all_node_colors.append(dict(node_colors))
            return(iterations, all_node_colors, node)
        
        frontier.extend(node.expand(problem))
           
        for n in node.expand(problem):
            node_colors[n.state] = "orange"
            iterations += 1
            all_node_colors.append(dict(node_colors))

        # modify the color of explored nodes to gray
        node_colors[node.state] = "gray"
        iterations += 1
        all_node_colors.append(dict(node_colors))
        
    return None

def depth_first_tree_search(problem):
    "Search the deepest nodes in the search tree first."
    iterations, all_node_colors, node = tree_depth_search_for_vis(problem)
    return(iterations, all_node_colors, node)

 

for example :

# -*- coding: utf-8 -*-
# /usr/bin/python
# 作者:Slash
# 实验日期:20200119
# Python版本:3.7
# 主题:基于深度优先和宽度优先的搜索算法的简单实现
#      用双向队列deque实现队列和栈的操作

from collections import deque    # 线性表的模块

# 首先定义一个创建图的类,使用邻接矩阵
class Graph(object):
    def __init__(self, *args, **kwargs):
        self.order = []  # visited order
        self.neighbor = {}
    
    def add_node(self, node):
        key, val = node
        if not isinstance(val, list):
            print('节点输入时应该为一个线性表')    # 避免不正确的输入
        self.neighbor[key] = val
    
    # 宽度优先算法的实现
    def BFS(self, root):
        #首先判断根节点是否为空节点
        if root != None:
            search_queue = deque()
            search_queue.append(root)
            visited = []
        else:
            print('root is None')
            return -1
    
        while search_queue:
            person = search_queue.popleft()
            self.order.append(person)
            
            if (not person in visited) and (person in self.neighbor.keys()):
                search_queue += self.neighbor[person]
                visited.append(person)

    # 深度优先算法的实现
    def DFS(self, root):
        # 首先判断根节点是否为空节点
        if root != None:
            search_queue = deque()
            search_queue.append(root)
            visited = []
        else:
            print('root is None')
            return -1
    
        while search_queue:
            person = search_queue.popleft()
            self.order.append(person)
            
            if (not person in visited) and (person in self.neighbor.keys()):
                tmp = self.neighbor[person]  #neighbor是字典结构
                tmp.reverse()  #队列反转
                
                for index in tmp:
                    search_queue.appendleft(index)
                
                visited.append(person)
                    
    def clear(self):
        self.order = []
                            
    def node_print(self):
        for index in self.order:
            print(index, end='  ')


if __name__ == '__main__':
    # 创建一个二叉树图
    g = Graph()
    g.add_node(('A', ['B', 'C']))
    g.add_node(('B', ['D', 'E']))
    g.add_node(('C', ['F']))
    
    # 进行宽度优先搜索
    g.BFS('A')
    print('宽度优先搜索:')
    print('  ', end='  ')
    g.node_print()
    g.clear()
    
    # 进行深度优先搜索
    print('\n\n深度优先搜索:')
    print('  ', end='  ')
    g.DFS('A')
    g.node_print()
    print()

NO.64——Python实现深度优先搜索DFS_第3张图片

 

 

你可能感兴趣的:(机器学习)