KMP算法
在介绍KMP算法之前,先介绍一下BF算法。
一.BF算法
BF算法是普通的模式匹配算法,BF算法的思想就是将目标串S的第一个字符与模式串P的第一个字符进行匹配,若相等,则继续比较S的第二个字符和P的第二个字符;若不相等,则比较S的第二个字符和P的第一个字符,依次比较下去,直到得出最后的匹配结果。
举例说明:
S: ababcababa
P: ababa
BF算法匹配的步骤如下
i=0 i=1 i=2 i=3 i=4
第一趟:ababcababa 第二趟:ababcababa 第三趟:ababcababa 第四趟:ababcababa 第五趟:ababcababa
ababa ababa ababa ababa ababa
j=0 j=1 j=2 j=3 j=4(i和j回溯)
i=1 i=2 i=3 i=4 i=3
第六趟:ababcababa 第七趟:ababcababa 第八趟:ababcababa 第九趟:ababcababa 第十趟:ababcababa
ababa ababa ababa ababa ababa
j=0 j=0 j=1 j=2(i和j回溯) j=0
i=4 i=5 i=6 i=7 i=8
第十一趟:ababcababa 第十二趟:ababcababa 第十三趟:ababcababa 第十四趟:ababcababa 第十五趟:ababcababa
ababa ababa ababa ababa ababa
j=0 j=0 j=1 j=2 j=3
i=9
第十六趟:ababcababa
ababa
j=4(匹配成功)
代码实现:
int BFMatch(char *s,char *p) { int i,j; i=0; while(i<strlen(s)) { j=0; while(s[i]==p[j]&&j<strlen(p)) { i++; j++; } if(j==strlen(p)) return i-strlen(p); i=i-j+1; //指针i回溯 } return -1; }
二.KMP算法
KMP算法之所以叫做KMP算法是因为这个算法是由三个人共同提出来的,就取三个人名字的首字母作为该算法的名字。其实KMP算法与BF算法的区别就在于KMP算法巧妙的消除了指针i的回溯问题,只需确定下次匹配j的位置即可,使得问题的复杂度由O(mn)下降到O(m+n)。
在KMP算法中,为了确定在匹配不成功时,下次匹配时j的位置,引入了next[]数组,next[j]的值表示P[0...j-1]中最长后缀的长度等于相同字符序列的前缀。
对于next[]数组的定义如下:
1) next[j] = -1 j = 0
2) next[j] = max(k): 0 3) next[j] = 0 其他 如: P a b a b a j 0 1 2 3 4 next -1 0 0 1 2 即next[j]=k>0时,表示P[0...k-1]=P[j-k,j-1] 因此KMP算法的思想就是:在匹配过程称,若发生不匹配的情况,如果next[j]>=0,则目标串的指针i不变,将模式串的指针j移动到next[j]的位置继续进行匹配;若next[j]=-1,则将i右移1位,并将j置0,继续进行比较。 代码实现如下: 因此KMP算法的关键在于求算next[]数组的值,即求算模式串每个位置处的最长后缀与前缀相同的长度, 而求算next[]数组的值有两种思路,第一种思路是用递推的思想去求算,还有一种就是直接去求解。 1.按照递推的思想: 根据定义next[0]=-1,假设next[j]=k, 即P[0...k-1]==P[j-k,j-1] 1)若P[j]==P[k],则有P[0..k]==P[j-k,j],很显然,next[j+1]=next[j]+1=k+1; 2)若P[j]!=P[k],则可以把其看做模式匹配的问题,即匹配失败的时候,k值如何移动,显然k=next[k]。 因此可以这样去实现:int KMPMatch(char *s,char *p)
{
int next[100];
int i,j;
i=0;
j=0;
getNext(p,next);
while(i<strlen(s))
{
if(j==-1||s[i]==p[j])
{
i++;
j++;
}
else
{
j=next[j]; //消除了指针i的回溯
}
if(j==strlen(p))
return i-strlen(p);
}
return -1;
}
void getNext(char *p,int *next)
{
int j,k;
next[0]=-1;
j=0;
k=-1;
while(j
void getNext(char *p,int *next)
{
int i,j,temp;
for(i=0;i