一、引言
二、拓扑排序概念
1.在图中有一个重要的有向图类型,(有向图的表示方法仍然可以是邻接表或者邻接矩阵法)。
2.仅有有向图无环图才具备可以得到拓扑排序的序列。
3.进行拓扑排序有两种方式:
三、理论讲解
PS:这里会详细介绍上述的两种拓扑排序的方式
1.DFS回溯法
2. 减治法
PS:可能会有人觉得两个结果怎么会不一样,这就时上面提到的随机性,先选择节点1和2 会得到不同的结果,其余节点有可能会发生这种情况,也就是说:拓扑排序和DFS一样序列可能有多个。
四、代码实例
PS:此处是转载 https://github.com/wangkuiwu/datastructs_and_algorithm/blob/master/source/graph/topsort/dag/java/ListDG.java
import java.io.IOException;
import java.util.Scanner;
import java.util.List;
import java.util.ArrayList;
import java.util.Queue;
import java.util.LinkedList;
public class ListDG {
// 邻接表中表对应的链表的顶点
private class ENode {
int ivex; // 该边所指向的顶点的位置
ENode nextEdge; // 指向下一条弧的指针
}
// 邻接表中表的顶点
private class VNode {
char data; // 顶点信息
ENode firstEdge; // 指向第一条依附该顶点的弧
};
private List mVexs; // 顶点数组
/*
* 创建图(自己输入数据)
*/
public ListDG() {
// 输入"顶点数"和"边数"
System.out.printf("input vertex number: ");
int vlen = readInt();
System.out.printf("input edge number: ");
int elen = readInt();
if ( vlen < 1 || elen < 1 || (elen > (vlen*(vlen - 1)))) {
System.out.printf("input error: invalid parameters!\n");
return ;
}
// 初始化"顶点"
mVexs = new ArrayList();
for (int i = 0; i < vlen; i++) {
System.out.printf("vertex(%d): ", i);
// 新建VNode
VNode vnode = new VNode();
vnode.data = readChar();
vnode.firstEdge = null;
// 将vnode添加到数组mVexs中
mVexs.add(vnode);
}
// 初始化"边"
//mMatrix = new int[vlen][vlen];
for (int i = 0; i < elen; i++) {
// 读取边的起始顶点和结束顶点
System.out.printf("edge(%d):", i);
char c1 = readChar();
char c2 = readChar();
int p1 = getPosition(c1);
int p2 = getPosition(c2);
// 初始化node1
ENode node1 = new ENode();
node1.ivex = p2;
// 将node1链接到"p1所在链表的末尾"
if(mVexs.get(p1).firstEdge == null)
mVexs.get(p1).firstEdge = node1;
else
linkLast(mVexs.get(p1).firstEdge, node1);
}
}
/*
* 创建图(用已提供的矩阵)
*
* 参数说明:
* vexs -- 顶点数组
* edges -- 边数组
*/
public ListDG(char[] vexs, char[][] edges) {
// 初始化"顶点数"和"边数"
int vlen = vexs.length;
int elen = edges.length;
// 初始化"顶点"
mVexs = new ArrayList();
for (int i = 0; i < vlen; i++) {
// 新建VNode
VNode vnode = new VNode();
vnode.data = vexs[i];
vnode.firstEdge = null;
// 将vnode添加到数组mVexs中
mVexs.add(vnode);
}
// 初始化"边"
for (int i = 0; i < elen; i++) {
// 读取边的起始顶点和结束顶点
char c1 = edges[i][0];
char c2 = edges[i][1];
// 读取边的起始顶点和结束顶点
int p1 = getPosition(edges[i][0]);
int p2 = getPosition(edges[i][1]);
// 初始化node1
ENode node1 = new ENode();
node1.ivex = p2;
// 将node1链接到"p1所在链表的末尾"
if(mVexs.get(p1).firstEdge == null)
mVexs.get(p1).firstEdge = node1;
else
linkLast(mVexs.get(p1).firstEdge, node1);
}
}
/*
* 将node节点链接到list的最后
*/
private void linkLast(ENode list, ENode node) {
ENode p = list;
while(p.nextEdge!=null)
p = p.nextEdge;
p.nextEdge = node;
}
/*
* 返回ch位置
*/
private int getPosition(char ch) {
for(int i=0; i='a'&&ch<='z') || (ch>='A'&&ch<='Z')));
return ch;
}
/*
* 读取一个输入字符
*/
private int readInt() {
Scanner scanner = new Scanner(System.in);
return scanner.nextInt();
}
/*
* 深度优先搜索遍历图的递归实现
*/
private void DFS(int i, boolean[] visited) {
ENode node;
visited[i] = true;
System.out.printf("%c ", mVexs.get(i).data);
node = mVexs.get(i).firstEdge;
while (node != null) {
if (!visited[node.ivex])
DFS(node.ivex, visited);
node = node.nextEdge;
}
}
/*
* 深度优先搜索遍历图
*/
public void DFS() {
boolean[] visited = new boolean[mVexs.size()]; // 顶点访问标记
// 初始化所有顶点都没有被访问
for (int i = 0; i < mVexs.size(); i++)
visited[i] = false;
System.out.printf("== DFS: ");
for (int i = 0; i < mVexs.size(); i++) {
if (!visited[i])
DFS(i, visited);
}
System.out.printf("\n");
}
/*
* 广度优先搜索(类似于树的层次遍历)
*/
public void BFS() {
int head = 0;
int rear = 0;
int[] queue = new int[mVexs.size()]; // 辅组队列
boolean[] visited = new boolean[mVexs.size()]; // 顶点访问标记
for (int i = 0; i < mVexs.size(); i++)
visited[i] = false;
System.out.printf("== BFS: ");
for (int i = 0; i < mVexs.size(); i++) {
if (!visited[i]) {
visited[i] = true;
System.out.printf("%c ", mVexs.get(i).data);
queue[rear++] = i; // 入队列
}
while (head != rear) {
int j = queue[head++]; // 出队列
ENode node = mVexs.get(j).firstEdge;
while (node != null) {
int k = node.ivex;
if (!visited[k])
{
visited[k] = true;
System.out.printf("%c ", mVexs.get(k).data);
queue[rear++] = k;
}
node = node.nextEdge;
}
}
}
System.out.printf("\n");
}
/*
* 打印矩阵队列图
*/
public void print() {
System.out.printf("== List Graph:\n");
for (int i = 0; i < mVexs.size(); i++) {
System.out.printf("%d(%c): ", i, mVexs.get(i).data);
ENode node = mVexs.get(i).firstEdge;
while (node != null) {
System.out.printf("%d(%c) ", node.ivex, mVexs.get(node.ivex).data);
node = node.nextEdge;
}
System.out.printf("\n");
}
}
/*
* 拓扑排序
*
* 返回值:
* -1 -- 失败(由于内存不足等原因导致)
* 0 -- 成功排序,并输入结果
* 1 -- 失败(该有向图是有环的)
*/
public int topologicalSort() {
int index = 0;
int num = mVexs.size();
int[] ins; // 入度数组
char[] tops; // 拓扑排序结果数组,记录每个节点的排序后的序号。
Queue queue; // 辅组队列
ins = new int[num];
tops = new char[num];
queue = new LinkedList();
// 统计每个顶点的入度数
for(int i = 0; i < num; i++) {
ENode node = mVexs.get(i).firstEdge;
while (node != null) {
ins[node.ivex]++;
node = node.nextEdge;
}
}
// 将所有入度为0的顶点入队列
for(int i = 0; i < num; i ++)
if(ins[i] == 0)
queue.offer(i); // 入队列
while (!queue.isEmpty()) { // 队列非空
int j = queue.poll().intValue(); // 出队列。j是顶点的序号
tops[index++] = mVexs.get(j).data; // 将该顶点添加到tops中,tops是排序结果
ENode node = mVexs.get(j).firstEdge;// 获取以该顶点为起点的出边队列
// 将与"node"关联的节点的入度减1;
// 若减1之后,该节点的入度为0;则将该节点添加到队列中。
while(node != null) {
// 将节点(序号为node.ivex)的入度减1。
ins[node.ivex]--;
// 若节点的入度为0,则将其"入队列"
if( ins[node.ivex] == 0)
queue.offer(node.ivex); // 入队列
node = node.nextEdge;
}
}
if(index != num) {
System.out.printf("Graph has a cycle\n");
return 1;
}
// 打印拓扑排序结果
System.out.printf("== TopSort: ");
for(int i = 0; i < num; i ++)
System.out.printf("%c ", tops[i]);
System.out.printf("\n");
return 0;
}
public static void main(String[] args) {
char[] vexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
char[][] edges = new char[][]{
{'A', 'G'},
{'B', 'A'},
{'B', 'D'},
{'C', 'F'},
{'C', 'G'},
{'D', 'E'},
{'D', 'F'}};
ListDG pG;
// 自定义"图"(输入矩阵队列)
//pG = new ListDG();
// 采用已有的"图"
pG = new ListDG(vexs, edges);
pG.print(); // 打印图
//pG.DFS(); // 深度优先遍历
//pG.BFS(); // 广度优先遍历
pG.topologicalSort(); // 拓扑排序
}
}
执行的图和拓扑排序结果如下:
五、拓扑排序应用
1.拓扑排序通常用来“排序”具有依赖关系的任务。
比如,如果用一个DAG图来表示一个工程,其中每个顶点表示工程中的一个任务,用有向边 表示在做任务 B 之前必须先完成任务 A。故在这个工程中,任意两个任务要么具有确定的先后关系,要么是没有关系,绝对不存在互相矛盾的关系(即环路)。