ROS下配置OpenCV

一.环境准备

Ubuntu16.04
ROS-kinetic
opencv3.3.1
video-stream-opencv(Python)
或者usb_cam (c++) 一个USB摄像头

 

video-stream-opencv是USB摄像头驱动,关于它的介绍,请看github:https://github.com/ros-drivers/video_stream_opencv 

 

二. 在ROS下创建工作空间

在欢迎界面, 点击“新建工作区”按钮(或选择“文件 - 新建工作区” ) , 选择路径并
填写工作区名称, 如“catkin_ws”, 则会创建一个名为“catkin_ws”工作区, 并显示在资源管理
器窗口:

ROS下配置OpenCV_第1张图片

三、在工作空间下创建程序包

1、安装video-stream-opencv

$ cd ~/catkin_ws/src/
$ git clone https://github.com/ros-drivers/video_stream_opencv.git
$ cd ..
$ catkin_make

2、编译好之后,添加编译好的文件到环境变量:

$ source devel/setup.bash

3、测试是否安装成功

在终端输入:

$ rosrun video_stream_opencv test_video_resource.py 0  #后面的0是摄像头编号

https://yq.aliyun.com/ziliao/203675

https://blog.csdn.net/Gpwner/article/details/78961362

1、安装usb_cam

进入创建好的工作空间:

cd ~/catkin_ws/src
git clone https://github.com/bosch-ros-pkg/usb_cam.git

然后退回到工作空间,编译代码:

cd ~/catkin_ws
catkin_make

编译好之后,添加编译好的文件到环境变量:

source devel/setup.bash

2、然后接下来测试usb_cam:
先运行usb_cam节点:

rosrun usb_cam usb_cam_node

运行上面命令发现没有显示图像,只看到摄像头打开了。这是因为ros发布的topic是/usb_cam/image_raw。新打开一个终端,可以通过如下命令查看:

rostopic list

所以我们需要运行如下命令才可以看到图像:

rosrun image_view image_view image:=/usb_cam/image_raw

或者直接写launch文件,这样就不用一个终端运行node,一个终端看图像。新建usb_cam_test.launch:


  "usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" >
    "video_device" value="/dev/video0" />
    "image_width" value="640" />
    "image_height" value="480" />
    "pixel_format" value="yuyv" />
    "camera_frame_id" value="usb_cam" />
    "io_method" value="mmap"/>
  
  "image_view" pkg="image_view" type="image_view" respawn="false" output="screen">
    from="image" to="/usb_cam/image_raw"/>
    "autosize" value="true" />
  

然后终端直接运行:

roslaunch usb_cam usb_cam_test.launch

 

右键点击 ROS 工作区下的“src”, 选择“新建 ROS 包”,输入包名称及其依赖包的名
称,如:
robot_vision roscpp std_msgs cv_bridge image_transport sensor_msgs

回车后,会创建名为“robot_vision ”、以“roscpp std_msgs cv_bridge image_transport sensor_msgs”为依赖的 ROS 包:

ROS下配置OpenCV_第2张图片

3、创建.cpp源文件

  在创建的程序包的src文件中创建一个文本文件,并命名为opencv_test.cpp,选择添加到可执行文件中。具体代码和注释如下:

ROS下配置OpenCV_第3张图片

#include //ros标准库头文件
#include/* image_transport 头文件用来在ROS系统中的话题上发布和订阅图象消息*/
#include/* cv_bridge中包含CvBridge库 */
#include/* ROS图象类型的编码函数*/
#include //C++标准输入输出库

//OpenCV3标准头文件
#include


static const std::string OPENCV_WINDOW = "Image window"; //定义输入窗口名称


//定义一个转换的类
class ImageConverter
{
private:
    ros::NodeHandle nh_; //定义ROS句柄
    image_transport::ImageTransport it_; //定义一个image_transport实例
    image_transport::Subscriber image_sub_; //定义ROS图象接收器
    image_transport::Publisher image_pub_; //定义ROS图象发布器
public:
    ImageConverter()
      :it_(nh_) //构造函数
    {    //这里是usb摄像头的topic,官网默认是/camera/image_raw,这里修改为usb摄像头/usb_cam/image_raw。
              //定义图象接受器,订阅话题是“/usb_cam/image_raw”
        image_sub_ = it_.subscribe("/usb_cam/image_raw", 1, &ImageConverter::convert_callback, this); 
        image_pub_ = it_.advertise("/image_converter/output_video", 1); //定义图象发布器
        //初始化输入输出窗口
        cv::namedWindow(OPENCV_WINDOW);
    }
    ~ImageConverter() //析构函数
    {
         cv::destroyWindow(OPENCV_WINDOW);
    }
    /*这是一个ROS和OpenCV的格式转换回调函数,将图象格式从sensor_msgs/Image--->cv::Mat*/
    void convert_callback(const sensor_msgs::ImageConstPtr& msg) 
    {
        cv_bridge::CvImagePtr cv_ptr; // 声明一个CvImage指针的实例

        try
        {   //将ROS消息中的图象信息提取,生成新cv类型的图象,复制给CvImage指针
            cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8);
        }
        catch(cv_bridge::Exception& e)  //异常处理
        {
            ROS_ERROR("cv_bridge exception: %s", e.what());
            return;
        }

        image_process(cv_ptr->image); //得到了cv::Mat类型的图象,在CvImage指针的image中,将结果传送给处理函数   
         // Output modified video stream
         image_pub_.publish(cv_ptr->toImageMsg());
    }
    /*这是图象处理的主要函数,一般会把图像处理的主要程序写在这个函数中。这里的例子只是一个彩色图象到灰度图象的转化
    到时候要修改就修改这里的函数即可    */
    void image_process(cv::Mat& img) 
    {
        // Draw an example circle on the video stream 
        if (img.rows > 60 && img.cols > 60) 
            {
                cv::circle(img, cv::Point(50, 50), 10, CV_RGB(255,0,0)); 
            }
        // Update GUI Window
         cv::imshow(OPENCV_WINDOW, img);
         cv::waitKey(5);
    }
};

//主函数
int main(int argc, char** argv)
{
    ros::init(argc, argv, "image_converter");
    ImageConverter ic;
    ros::spin();
    return 0;
}

 

4.CMakeLists.txt

进入包的目录,修改CmakeList.txt,在文件最后添加:

 
    
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})
add_executable(opencv_test src/opencv_test.cpp) #根据自己的文件名修改里面opencv_test的内容
target_link_libraries(opencv_test ${catkin_LIBRARIES} ${OpenCV_LIBRARIES})

 

其中, Debug 和 Release 选项分别表示构建调试版和发布版, 默认构建方式为本地构建 。

有两种构建方法:

ROS下配置OpenCV_第4张图片

编译完成后,执行:

source devel/setup.bash

 

先打开一个终端运行roscore,用以节点之间的通信交互。
再打开一个终端运行rosrun usbcam usbcam_node
再打开一个终端运行rosrun opencvtest opencv_testcam
之后即可看到opencv处理后摄像头的图像。

如果找不到包,执行命令

rospack profile
source ~/catkin_ws/devel/setup.bash

 

你可能感兴趣的:(ROS下配置OpenCV)