- DeepSeek 实用集成 - 大模型能力轻松接入各类软件
code在飞
ai
将DeepSeek大模型能力轻松接入各类软件详细点击awesome-deepseek-integration/README_cn.mdatmain·deepseek-ai/awesome-deepseek-integration·GitHub
- Deepseek 组合落地都是王炸
qqxinxi
运维教学运维deepseekpython大数据
思维即资产,模型是股东。有了Deepseek模型,思维资产才能增值。Deepseek+kimi自动生成PPTDeepseek+ClineAI编程好帮手Deepseek+剪映一键生成短视频Deepseek+MJ设计师诞生Deepseek+Dify企业快速搭建本地知识库Deepseek+Notion文本知识库Deepseek+Otter一键转会议记录Deepseek+即梦+tripo3D模型分分钟De
- 本地部署DeepSeek + AnythingLLM 搭建高效安全的个人知识库
Chhjnavy
AIDeepSeek大模型本地知识库协同工作
环境准备:本地部署方案请参考博客:windows平台本地部署DeepSeek大模型+OpenWebUI网页界面(可以离线使用)-CSDN博客windows平台本地部署DeepSeek大模型+Chatbox界面(可以离线使用)-CSDN博客根据本人电脑配置:windows11+i9-13900HX+RTX4060+DDR5560032G内存确定搭建方案:DeepSeek-R1:7b+Ollama+A
- DeepSeek多软件协同效应,产生的王炸组合
Chhjnavy
AI人工智能DeepSeek协同工作
DeepSeek网址:DeepSeek|深度求索1.DeepSeek+Kimi:一键生成高质量PPT,快速制作专业演示文稿Kimi网址:Kimi.ai-会推理解析,能深度思考的AI助手步骤:将PPT内容描述给DeepSeek,产生PPT大纲以及内容;将DeepSeek产生的大纲以及内容,丢到Kimi+模型中,即可自动产生PPT;2.DeepSeek+剪映:生成原创视频,适用于短视频创作剪映网址:剪
- 观影《哪吒2》后,我用 DeepSeek梳理了封神人物关系
潘智祥
LLMDeepSeek
年初四晚上跟老婆还有老婆的弟弟(也就是小舅子,但我一直不习惯这个称谓)去看了哪吒2,老婆说,我们好像有快2年没去电影院看过电影了。从前年老婆怀孕开始,确实没再去过电影院。哪吒2中提到了很多《封神演义》中的角色,比如无量仙翁、昆仑十二金仙、元始天尊等,哪吒本身也是封神中的一个重要角色。我一直对于中国的神话体系还挺有兴趣的,正好最近DeepSeek很火,我就用DeepSeeKR1+联网搜索整理了一下这
- LLM论文笔记 9: Neural Networks and the Chomsky Hierarchy
Zhouqi_Hua
大模型论文阅读论文阅读人工智能深度学习笔记语言模型
Arxiv日期:2022.9.29机构:GoogleDeepMind/Stanford关键词transformer架构原理乔姆斯基体系长度泛化核心结论1.虽然Transformer理论上具有图灵完备性,但在实践中能力受到位置不变性和有限记忆的限制2.Transformer在一些任务中表现较差,例如正则语言任务(如ParityCheck),表明其与Chomsky层级的对齐性不佳3.Transform
- 在conda虚拟环境中安装jupyter lab-----deepseek问答记录
溯源006
deepseek回答记录condajupyteride
在Conda虚拟环境中安装JupyterLab的步骤如下:1.创建并激活Conda虚拟环境如果你还没有创建虚拟环境,可以使用以下命令创建一个新的虚拟环境并激活它:condacreate-nmyenvpython=3.x#将`myenv`替换为你的环境名称,`3.x`替换为所需的Python版本condaactivatemyenv2.安装JupyterLab在激活的虚拟环境中,使用以下命令安装Jup
- deepseek和ChatGPT 4o比较
调皮的芋头
chatgpt人工智能
DeepSeek和ChatGPT4o在实现方式、评测效果和使用体验方面的详细比较:实现方式:DeepSeek:推理型大模型DeepSeek的核心是推理型大模型,与指令型大模型不同,它不需要用户提供详细的步骤指令,而是通过理解用户的真实需求和场景来提供答案。后训练+RL/RLHFDeepSeekR1等推理模型是在通用模型的基础上进行“特训”(后训练+SFT/RL/RLHF),使其不仅知道得多还用得好
- 采用分布式部署deepseek
慧香一格
AI学习分布式deepseek
分布式部署DeepSeek涉及使用多个计算节点来加速模型训练或提升推理效率。下面是一个基本的指南,帮助您了解如何进行分布式部署。1.环境准备硬件需求:确保您的集群环境中有足够的GPU资源,并且所有机器之间可以通过高速网络互联。软件依赖:安装必要的库和工具,如PyTorch、Transformers等。特别地,对于分布式训练,还需要安装torch.distributed或者类似的库支持,例如Horo
- 水务+AI应用探索(一)| FastGPT+DeepSeek 本地部署
LLM.
人工智能LLM清华大学deepseek程序员fastgpt本地化部署
在当下的科技浪潮中,AI无疑是最炙手可热的焦点之一,其强大的能力催生出了丰富多样的应用场景,广泛渗透到各个行业领域。对于水务行业而言,AI的潜力同样不可估量。为了深入探究AI在水务领域的实际应用成效,切实掌握与之相关的前沿应用技术,我们积极开展了AI在水务业务应用方面的实践工作,力求为行业发展带来新的突破与变革。一deepseek的本地化部署二搭建企业知识库应用三AI应用实践:工单地址信息识别四A
- 有了ChatGPT和deepseek,我们还需要刷力扣吗
Ash Butterfield
人工智能
像ChatGPT这样的AI写手可以帮助我们大幅度提高工作效率,尤其是在代码生成、文档编写等方面。但对于是否需要深入学习基础算法和刷力扣这类问题,还是有一些值得思考的地方。1.AI的局限性深度发问与思考:虽然像ChatGPT这样的AI工具能生成代码,但这些代码生成并不代表你完全不需要理解基础算法。AI可以帮助你自动化一些任务,但它并不能完全替代对问题的深度理解和思考。理解算法的原理和背后的数学知识,
- 《Ollama 与 DeepSeek 整合应用入门指南》一、二、三章
Allen-Steven
ollamadeepseek
第一章:工具概述与核心价值1.1Ollama技术解析本地化部署优势:无需网络连接的数据隐私保护跨平台架构设计:支持Windows/macOS/Linux全平台模型管理引擎:自动化处理模型依赖与版本控制1.2DeepSeek模型特性多模态处理能力:文本生成、代码理解、数学推理中文优化架构:针对中文语料的特殊训练策略模型家族图谱:从1.3B到67B的参数规模选择1.3技术整合价值本地智能计算:企业数据
- CSDN宣布C知道产品接入DeepSeek R1满血版大模型,文心一言、星火认知模型
周杰伦_Jay
大模型LLMs热点事件文心一言人工智能leetcode目标检测机器学习自然语言处理生成对抗网络
文章目录前言一、产品升级与模式革新二、技术整合与大模型应用三、深度思考模式的核心优势四、应用场景与用户受益五、未来发展与技术创新前言亲爱的家人们,创作很不容易,若对您有帮助的话,请点赞收藏加关注哦,您的关注是我持续创作的动力,谢谢大家!有问题请私信或联系邮箱:
[email protected]一、产品升级与模式革新CSDN宣布C知道产品接入DeepSeek大模型。通过植入“深度思考模式”,全面升级AI
- DeepSeek 实用集成,接入各类软件
安替-AnTi
deepseek集成软件实用
将DeepSeek大模型能力轻松接入各类软件。访问DeepSeek开放平台来获取您的APIkey。详细内容参考:点我应用程序QuantalogicQuantaLogic是一个ReAct(推理和行动)框架,用于构建高级AI代理
- 本地化部署AI知识库:基于Ollama+DeepSeek+AnythingLLM保姆级教程
elecfan2011
人工智能
前言在数据安全和隐私保护需求日益增长的今天,本地化部署AI知识库成为企业/开发者的首选方案。本文将手把手教你如何通过Ollama(模型管理工具)、DeepSeek-R1(国产开源大模型)和AnythingLLM(知识库管理平台),搭建一套完全本地运行的智能问答系统。全程无需联网,数据100%私有化!目录环境准备与工具安装部署DeepSeek-R1模型配置AnythingLLM知识库平台构建本地知识
- 腾讯云大模型知识引擎×DeepSeek赋能文旅
繁依Fanyi
python
腾讯云大模型知识引擎×DeepSeek赋能文旅——以合肥文旅为例的技术革新与实践路径一、技术底座:知识引擎与DeepSeek的融合逻辑腾讯云大模型知识引擎与DeepSeek模型的结合,本质上是**“知识库+检索增强生成(RAG)+实时联网能力”**的技术框架升级。通过三步调用API接口,开发者可快速搭建基于DeepSeek的文旅智能应用。其核心优势包括:动态知识更新:突破传统大模型预训练数据的时间
- DeepSeek大模型的发展的十问十答
科技互联人生
人工智能AIGCDeepseek
DeepSeek大模型是由杭州深度求索人工智能基础技术研究有限公司开发的一款基于Transformer架构的大型语言模型,具体介绍如下:1.架构基础Transformer架构:DeepSeek大模型基于Transformer架构,该架构由Google在2017年提出,以自注意力机制为核心,能够并行处理输入序列中的每个元素,从而大大提高模型的计算效率。DeepSeek在Transformer架构的基
- Fatal error in launcher: Unable to create process报错
萧若珮
笔记
完整报错是这样的:Fatalerrorinlauncher:Unabletocreateprocessusing'"c:\jenkins\workspace\deepview-python_2.5.14\python\python.exe""D:\software\eIQ\python\Scripts\pip.exe"showtensorflow':???????????查资料可以知道这种情况出现
- 揭密 scaling laws
deardao
机器学习
ScalinglawsOpenAI在其早期的关于scalinglaws的论文[1]中提出了基础理论,但该文缺乏一些具体的求解过程,且未能在更大规模的模型上进行验证。与此同时,后续研究,例如DeepMind的ChinChilla[2]还提出了不同的结论。论文题目:UnravelingtheMysteryofScalingLaws:PartI论文地址:https://arxiv.org/abs/240
- DeepSeek 从入门到精通
DS_Watson
aiAI
DeepSeek火了,资料分享给大家通过网盘分享的文件:DeepSeek链接:https://pan.baidu.com/s/1NHpM2E3m6bvLMoEfa-HAgg?pwd=h3if提取码:h3if我用夸克网盘分享了「DeepSeek」链接:https://pan.quark.cn/s/8a4654b23504提取码:ip6S
- 什么是Scaling Laws(缩放定律);DeepSeek的Scaling Laws
ZhangJiQun&MXP
教学2024大模型以及算力2021论文人工智能自然语言处理神经网络语言模型深度学习
什么是ScalingLaws(缩放定律)ScalingLaws(缩放定律)在人工智能尤其是深度学习领域具有重要意义,以下是相关介绍及示例:定义与内涵ScalingLaws主要描述了深度学习模型在规模(如模型参数数量、训练数据量、计算资源等)不断扩大时,模型性能与这些规模因素之间的定量关系。它表明,在一定条件下,模型的性能会随着模型规模的增加而以某种可预测的方式提升,通常表现为模型的损失函数值随模型
- 深度揭秘 DeepSeek:2025 最新版,带你从 0 基础到熟练运用
小白教程
AI写作人工智能AIGC
文章目录前言一、deepseek使用技巧大全下载二、使用步骤1.准备篇:快速上手DeepSeekAI平台2.基础对话篇:有效提问与魔法指令3.效率飞跃篇:文件处理与代码生成4.场景实战篇:解决真实世界问题5.高手进化篇:专业生产力工具6.自我学习能力提升7.编程教练篇:代码入门与面试准备8.创作进阶篇:小说创作与视频脚本总结前言这是一篇关于DeepSeekAI平台使用指南的文章,主要介绍了从注册到
- Qwen 2.5-Max + Cline 组合,真的能替代 DeepSeek V3 和 R1 吗?实测见真章!
surfirst
LLM编程工具大模型AI编程
1.背景近年来,AI代码编辑器如Cursor和Windsurf在国内市场颇受欢迎,而开源方案Cline+DeepSeekV3也随着DeepSeekV3和R1的崛起逐步被开发者接受。然而,2025年1月29日,阿里正式推出了Qwen2.5-Max,这款模型在各大评测基准上展现了全球领先的能力。其编程实战能力是否能匹敌DeepSeekV3、GPT-4o甚至Claude3.5Sonnet?本文将重点探讨
- 量子位招聘 | DeepSeek帮我们改的招聘启事
量子位
关注前沿科技量子位未来同事,你好~这是一则招聘帖。如果你与我们志同道合,对AI大模型、具身智能、终端硬件、AI新媒体编辑感兴趣,我们正在招聘这些领域的原创作者。以下岗位均为全职,工作地点:北京中关村。岗位面向:社招、应届毕业生,所有岗位均可实习——表现出色均可转正加分项:乐于探索AI新工具,善用AI新工具;拥有解读论文的能力,能深入浅出讲解原理;有写代码能力;量子位长期读者。加入我们,你可以获得:
- 量子位招聘 | DeepSeek帮我们改的招聘启事
量子位
关注前沿科技量子位未来同事,你好~这是一则招聘帖。如果你与我们志同道合,对AI大模型、具身智能、终端硬件、AI新媒体编辑感兴趣,我们正在招聘这些领域的原创作者。以下岗位均为全职,工作地点:北京中关村。岗位面向:社招、应届毕业生,所有岗位均可实习——表现出色均可转正加分项:乐于探索AI新工具,善用AI新工具;拥有解读论文的能力,能深入浅出讲解原理;有写代码能力;量子位长期读者。加入我们,你可以获得:
- 反超DeepSeek!新版GPT-4o登顶竞技场,奥特曼:还会更好
量子位
关注前沿科技量子位GPT-4o悄悄更新版本,在大模型竞技场超越DeepSeek-R1登上并列第一。除了数学(第6),还在多个单项上拿下第一:创意写作;编程;指令遵循;长文本查询;多轮对话;先直观看下新版GPT-4o的能力如何,还是以之前DeepSeek-R1和o3-mini都挑战过的一个例子来看。Prompt:编写一个Python程序,展示一个球在旋转的六边形内弹跳。球应受到重力和摩擦力的影响,并
- 如何训练LLM“思考”(像o1和DeepSeek-R1一样, 高级推理模型解析
果冻人工智能
AI员工人工智能chatgpt深度学习
2024年9月,OpenAI发布了它的o1模型,该模型基于大规模强化学习训练,赋予了它“高级推理”能力。不幸的是,他们是如何做到这一点的细节从未被公开披露。然而,今天,DeepSeek(一个AI研究实验室)成功复现了这种推理行为,并公开了他们方法的完整技术细节。在这篇文章中,我将讨论这一创新背后的关键思想,并描述它们在底层是如何运作的。一台会思考的笔记本电脑OpenAI的o1模型标志着训练大语言模
- 《DeepSeek赋能工业互联网:解锁数据深度分析新姿势》
人工智能深度学习
在工业4.0与智能制造的浪潮中,工业互联网成为制造业转型升级的关键支撑。而数据,作为工业互联网的核心资产,其深度分析的质量直接影响着企业的决策准确性、生产效率与竞争力。DeepSeek,作为AI大模型领域的佼佼者,凭借独特的算法优势,为工业互联网的数据深度分析开辟了新路径,带来了前所未有的变革。精准高效的数据采集与预处理在工业场景中,设备种类繁多、数据来源广泛且格式各异。DeepSeek研发的智能
- ChatGPT for Bot在QQ、微信等平台实现直接和deepseek对话的AI聊天程序包!支持DeepSeek、Claude、Ollama等主流模型,提供人物调整,虚拟朋友、语音对话
struggle2025
人工智能chatgpt机器人
一、软件介绍文末提供安装包和源码下载ChatGPTforBot一款支持在QQ、微信等聊天平台直接跟DeepSeek语言模型聊天的程序!真正的AI聊天!支持DeepSeek、Claude、OpenAI、Gemini、ChatGLM、Ollama,人设调教,虚拟朋友、语音对话。它可以让你在聊天平台上对接语言模型,实现和语言模型的直接对话。个人使用总结,连入deepseek后,告诉它专业的知识,然后给人
- AI 诊疗是经验医学还是循证医学?
医学AppMatrix
有用的数据分析人工智能大数据深度学习
随着deepseek的爆火,以及AI诊疗个案的肯定,似乎医生和患者都已经接受了AI在医学诊疗上的应用。人类诊疗模式存在经验医学和循证医学两种,那AI的诊疗是经验医学还是循证医学呢?一、AI诊疗经验医学还是循证医学?AI进行诊疗与经验医学、循证医学都有一定关联。经验医学角度经验医学主要依靠医生个人的临床经验来进行疾病的诊断和治疗决策。AI在一定程度上可以模拟经验医学。通过对大量医疗数据的学习,这些数
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟