- 2-80 基于matlab-GUI,实现kalman滤波对目标物的位置进行检测跟踪
顶呱呱程序
matlab工程应用matlab汽车算法形态学处理冒泡法kalman视频跟踪滤波
基于matlab-GUI,实现kalman滤波对目标物的位置进行检测跟踪。检测汽车中心和最大半径,与背景差分选择较大差异的区域进行形态学处理,用冒泡法对目标面积从大到小排序。程序已调通,可直接运行。2-80kalman视频跟踪滤波-小红书(xiaohongshu.com)
- Kalman滤波参数、调整原则
Terry Cao 漕河泾
VSLAM人工智能算法
1.Q、P、R关系P的迭代为P=QTPQ;R为观测的协方差;状态延时高,说明收敛速度慢。估计参数P越大,收敛的越快。测量误差R越小,收敛的越快。调整这两个参数即可,从状态更新上说,测量误差越小,估计参数误差越大,说明我们越相信测量值,自然收敛的快。缺点就是会让系统变化过快,如果测量值更加不准,则精度会下降,系统不够稳定。2.K与Q、R关系k~Q/(R+Q)P0/(Q+R),收敛的快慢程度。总结下自
- 如何利用BibTex生成论文参考文献列表
写完就会了
解决问题Latex参考文献BibTex
如何利用BibTex生成论文参考文献列表Step1:先在GoogleScholar上找到BibTeX条目信息导出来;如下:@article{chowdhary2010aerodynamic,title={AerodynamicparameterestimationfromflightdataapplyingextendedandunscentedKalmanfilter},author={Chow
- 【目标跟踪】提供一种简单跟踪测距方法(c++)
读书猿
目标跟踪c++人工智能
文章目录一、前言二、c++代码2.1、Tracking2.2、KalmanTracking2.3、Hungarian2.4、TrackingInfo三、调用示例四、结果一、前言在许多目标检测应用场景中,完完全全依赖目标检测对下游是很难做出有效判断,如漏检。检测后都会加入跟踪进行一些判断或者说补偿。而在智能驾驶中,还需要目标位置信息,所以还需要测距。往期博客介绍了许多处理复杂问题的,而大部分时候我们
- GNSS定位技术总结与PPP定位技术
Code_ADing
算法人工智能学习GNSS笔记全球卫星导航系统RTK
1.统一观测值方程2.PPP方程构建站间单差方程如下:同样的,设计矩阵也更加庞大:站间单差消除了卫星轨道、卫星钟、电离层、对流层以及卫星端的伪距和载波硬件延迟的影响。但在PPP中,我们无法通过站间单差消除这些影响,所以需要挨个考虑:3.PPP中的Kalman滤波4.PPP技术概述精密单点定位技术(precisepointpositioning,PPP),可以使用单台接收机在全球任何位置获得高精度的
- 2024.1.30 GNSS 学习笔记
Code_ADing
GNSS日常学习零散知识点学习笔记GNSS算法全球导航定位系统
站星双差Kalman滤波伪距差分定位流程1.RTK定位技术(实时载波相位差分技术)原理-站间单差浮点解1.RTK技术其实就是在RTD技术的基础上增加载波观测值的使用。由于伪距的噪声在分米量级,即使我们通过站间单差消除了绝大部分的误差影响,但受限于伪距的精度,我们也只能达到分米量级的定位水平。但载波不同,载波的精度在毫米量级,所以如果其他误差完全消除的话,理论上定位精度可达到的毫米水平。毫米水平的定
- 【目标跟踪】多相机环视跟踪
读书猿
目标跟踪人工智能自动驾驶
文章目录一、前言二、流程图三、实现原理3.1、初始化3.2、输入3.3、初始航迹3.4、航迹预测3.5、航迹匹配3.6、输出结果四、c++代码五、总结一、前言多相机目标跟踪主要是为了实现360度跟踪。单相机检测存在左右后的盲区视野。在智能驾驶领域,要想靠相机实现无人驾驶,相机必须360度无死角全覆盖。博主提供一种非深度学习方法,采用kalman滤波+匈牙利匹配方式实现环视跟踪。有兴趣可以参考往期【
- 【论文阅读|2024 WACV 多目标跟踪Deep-EloU】
Dymc
深度学习python论文论文阅读深度学习人工智能
论文阅读|2024WACV多目标跟踪Deep-EloU摘要1引言(Introduction)2相关工作(RelatedWork)2.1基于卡尔曼滤波器的多目标跟踪算法(Multi-ObjectTrackingusingKalmanFilter)2.2基于定位的多目标跟踪算法(Location-basedMulti-ObjectTracking)2.3基于外观的多目标跟踪(Appearance-ba
- 【现代控制系统】能控性与能观性
你哥同学
现代控制系统线性代数矩阵能控性能观性
能控性与能观性2023年11月25日#controlsys文章目录能控性与能观性1.能控性1.1能控性(可控性)的引入1.2LTI系统的可控性1.3LTV系统的可控性2.能观性2.1能观性(可观性)引入2.2LTI系统的可观性2.3LTV系统的可观性3.状态向量的非奇异线性变换3.1LTI能控性分解3.2LTI能观性分解3.3Kalman分解定理5.其他5.1对偶定理5.2能控性能观性和传递函数的
- [足式机器人]Part2 Dr. CAN学习笔记- Kalman Filter卡尔曼滤波器Ch05-3+4
LiongLoure
运动学与动力学学习笔记
本文仅供学习使用本文参考:B站:DR_CANDr.CAN学习笔记-KalmanFilter卡尔曼滤波器Ch05-3+43.Stepbystep:DeriationofKalmenGain卡尔曼增益/因数详细推导4.Priori/PosterrorierrorCovarianceMartix误差协方差矩阵3.Stepbystep:DeriationofKalmenGain卡尔曼增益/因数详细推导4.
- [足式机器人]Part2 Dr. CAN学习笔记- Kalman Filter卡尔曼滤波器Ch05-5+6
LiongLoure
控制算法学习笔记
本文仅供学习使用本文参考:B站:DR_CANDr.CAN学习笔记-KalmanFilter卡尔曼滤波器Ch05-5+65.AnExample2D例子6.ExtendedKalmanFilter扩展卡尔曼滤波器(EKF)5.AnExample2D例子6.ExtendedKalmanFilter扩展卡尔曼滤波器(EKF)
- [足式机器人]Part2 Dr. CAN学习笔记- Kalman Filter卡尔曼滤波器Ch05
LiongLoure
控制算法学习笔记
本文仅供学习使用本文参考:B站:DR_CANDr.CAN学习笔记-KalmanFilter卡尔曼滤波器Ch051.RecursiveAlgirithm递归算法2.DataFusion数据融合CovarinceMatrix协方差矩阵StateSpace状态空间方程Observation观测器3.Stepbystep:DeriationofKalmenGain卡尔曼增益/因数详细推导4.Priori/
- [足式机器人]Part2 Dr. CAN学习笔记- Kalman Filter卡尔曼滤波器Ch05-1+2
LiongLoure
控制算法学习笔记
本文仅供学习使用本文参考:B站:DR_CANDr.CAN学习笔记-KalmanFilter卡尔曼滤波器Ch05-1+21.RecursiveAlgirithm递归算法2.DataFusion数据融合CovarinceMatrix协方差矩阵StateSpace状态空间方程Observation观测器1.RecursiveAlgirithm递归算法2.DataFusion数据融合CovarinceMa
- 卡尔曼滤波基本原理详解
YRr YRr
卡尔曼滤波控制算法stm32嵌入式硬件单片机
卡尔曼滤波卡尔曼滤波简介卡尔曼滤波器(KalmanFilter)是一种高效的递推滤波器(即基于上一个时刻的估计来更新当前时刻的估计),它能够从一系列含有噪声的观测数据中估计动态系统的状态。它在1960年由鲁道夫·卡尔曼提出,如今广泛应用于航空航天、汽车导航系统、机器人导航以及经济学等领域。基本原理卡尔曼滤波器基于线性动态系统的状态空间表示法。它假设系统状态是线性的,并且过程噪声和观测噪声均为高斯分
- Kalman Filter in SLAM (7) ——Error-state Iterated Kalman Filter (EsIKF, 误差状态迭代卡尔曼滤波)
Cc1924
SLAM机器学习人工智能算法
文章目录1.EsKF和IEKF公式回顾1.1.EsKF误差状态卡尔曼滤波方程1.2.IEKF迭代扩展卡尔曼滤波方程2.EsIKF公式推导2.1.预测公式2.2.校正公式2.2.1.误差状态观测方程2.2.2.传感器观测误差值2.2.3.校正公式2.3.R2Live中的Es-IKF的校正公式理解2.3.1.IMU+Camera2.3.2.IMU+LiDAR实际EsIKF就是把EsKF和IEKF两个结
- Kalman_Filter卡尔曼滤波器计算,陀螺仪卡尔曼滤波角度估算及代码
LuDvei
STM32嵌入式硬件智能硬件单片机硬件工程stm32mcu
目录1.向量轴的空间角度角度计算2.正态分布3.方差、协方差4.卡尔曼公式计算4.1状态空间方程4.2协方差矩阵4.3卡尔曼增益4.4状态更新方程4.5协方差更新方程5.陀螺仪卡尔曼滤波完整代码1.向量轴的空间角度角度计算以横滚角为例,X轴旋转需要一个初始角度,Y、Z轴都会跟随X轴旋转而转动,我们认为Y轴平行于水平面时,横滚角Roll的角度为0。从X轴观测,假设Y轴由水平面转动θ角度,则:accY
- lucky学习运动13天
杉杉妈Alice
2021年02月18日扇贝每日一句2022年倒计时316天Itrulybelievethere'salwaysasolutiontoeveryproblem.我确信,每个问题都有解决方案。-MairaKalman今天由于是我的第1天上班,所以从早上8:30一直到晚上6:30才回家。回到家只好问lucky在家里都做了啥,他回答就是看电视吃东西玩儿。既然没有学习,那早上带去爷爷奶奶那的书,不知道起了什
- Kalman滤波中状态方程初始化参数设置
@曾记否
卡尔曼滤波matlab自动化算法
arcdeg=pi/180;%初始化参数att=[0;0;90]*arcdeg;vn0=[0;0;0];pos0=[[34;108]*arcdeg;100];%att--欧拉角;arcdeg--度转换为弧度;vn--速度;pos--位置qnb0=a2qua(att);qnb=qnb0;vn=vn0;pos=pos0;%姿态、速度和位置初始化%添加初始误差phi=[0.1;0.2;3]*arcmin
- 详解卡尔曼滤波(Kalman Filter)
一碗姜汤
统计信号处理算法人工智能机器学习
1.从维纳滤波到卡尔曼滤波黑盒(BlackBox)思想最早由维纳(Wiener)在1939年提出,即假定我们对从数据到估计中间的映射过程一无所知,仅仅用线性估计(我们知道在高斯背景下,线性估计能达到克拉美劳下界,是最优估计)来掩盖我们的无知。但是,到了二十年以后的1960年卡尔曼的年代,我们对于红框内的事(priorknowledge),很有可能是知道的,并且知道得很详细,很清楚。再这样的情况下,
- 运维工程师的出路到底在哪里?
Mindtechnist
运维
欢迎关注博主Mindtechnist或加入【智能科技社区】一起学习和分享Linux、C、C++、Python、Matlab,机器人运动控制、多机器人协作,智能优化算法,贝叶斯滤波与Kalman估计、多传感器信息融合,机器学习,人工智能,控制理论等相关领域的知识和技术。关注公粽号《机器和智能》回复关键词“python项目实战”即可获取美哆商城视频资源!博主介绍:CSDN优质创作者,CSDN实力新星,
- 卡尔曼滤波算法介绍
薛定谔的zhu
算法室内定位技术
卡尔曼滤波(KalmanFilter)是一种高效的递归滤波器,用于线性动态系统的估计和控制。它在1960年由RudolfE.Kalman提出。卡尔曼滤波通过结合一系列的测量观测值(包括不确定性的),并考虑外部因素(如系统噪声),来估计动态系统的内部状态。###基本原理卡尔曼滤波主要用于两个方面:预测和更新。其核心是维护两个主要的变量:状态估计和不确定性估计。1.**状态估计**:预测系统下一时刻的
- mpu6050-kalman- no dmp,f407
ooolmf
单片机
通过定时器3,定时20ms,进行kalman滤波,读取角度。利用串口助手,发送角度到用软件iic,pg5,pg6,两个IO口模拟IIC,,代码主要有四个。mpuiic.h#ifndef__MPUIIC_H#define__MPUIIC_H#include"sys.h"//正点原子MPU6050通讯线驱动//IO方向设置//#defineMPU_SDA_IN(){GPIOG->CRL&=0X0FFF
- Kalman滤波器参数分析
一枚努力的程序猿
px4
Kalman滤波器参数结合自己平时处理的数据,简单分析下kalman滤波器中参数对于滤波效果的影响。Kalman滤波参数影响总结Predict中给出的方程:其中Pz,vz,bz分别代表z轴方向的位置、速度和加速度;u为输入,r为扰动,Q为过程噪声;由于在kalman滤波中应用的都是x(k)=A*x(k-1)+B*u(k-1)+Q;此处求解的为下一时刻的状态量。由于上面公式求解的为状态的导数。故转化
- 【滤波第三期】卡尔曼滤波的原理和C代码
撞上电子
算法机器学习人工智能线性代数
卡尔曼滤波(KalmanFilter)是一种递归的、自适应的滤波算法,广泛应用于估计系统状态和观测过程中的噪声。它最初在1960年被提出,被认为是控制理论和信号处理领域中最重要的发展之一。卡尔曼滤波器在许多领域,包括导航、机器人、金融和通信系统中都有广泛的应用。1,基本原理:卡尔曼滤波器的核心思想是融合系统的动态模型和实际的观测数据,通过对过程和测量噪声的估计,提供对系统状态的最优估计。其基本原理
- 卡尔曼滤波原理
Nav.
算法matlab
1卡尔曼滤波原理 卡尔曼滤波算法作为一种重要的最优估计理论被广泛应用于各种领域。组合导航系统的设计一般都是采用Kalman滤波器,Kalman滤波器最早和最成功的应用实例便是在导航领域。卡尔曼滤波有连续型和离散型两种形式,连续型卡尔曼滤波器常用于卡尔曼滤波的理论性能分析,离散型卡尔曼滤波器可以在数字计算机上直接实现,本文将介绍数字型卡尔曼滤波器的使用。 假设有一个离散线性系统,k时刻的系统状态
- 卡尔曼(kalman)滤波学习测试例
奋进的大脑袋
学习python卡尔曼
下面两套代码一套是python,一套是matlab,效果是一样的。PYTHONimportnumpyasnpimportmatplotlib.pyplotaspltt=np.arange(1,1001)nsig=5*np.sin(0.01*t)+np.random.rand(len(t))+np.random.randn(len(t))+5*np.cos(0.05*t+np.pi/1.5)kf=n
- 基于卡尔曼滤波的跟踪目标算法matlab仿真
Simuworld
MATLAB仿真案例matlab卡尔曼滤波跟踪目标matlab源码matlab程序设计
目录1.算法概述2.仿真效果2.仿真效果1.算法概述卡尔曼滤波(Kalmanfiltering)是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。数据滤波是去除噪声还原真实数据的一种数据处理技术,Kalman滤波在测量方差已知的情况下能够从
- 基于卡尔曼滤波的SLAM地图目标跟踪(附带Matlab代码)
COWizard
目标跟踪matlab人工智能Matlab
SLAM(SimultaneousLocalizationandMapping)是一种在未知环境中进行自主导航和建图的技术。SLAM算法的一个重要应用是目标跟踪,即通过结合传感器数据和地图信息,实时估计目标的位置并跟踪其运动。在本文中,我们将介绍如何使用卡尔曼滤波(KalmanFilter)来实现SLAM地图目标跟踪,并提供相应的Matlab代码供参考。首先,让我们了解一下卡尔曼滤波的基本原理。卡
- 【MATLAB源码-第99期】基于matlab的OFDM系统卡尔曼滤波(kalman)信道估计,对比LS,MMSE。
Matlab程序猿
MATLAB信道估计与均衡通信原理matlab开发语言信息与通信
操作环境:MATLAB2022a1、算法描述卡尔曼滤波器(KalmanFilter)是一种有效的递归滤波器,它能够从一系列的含有噪声的测量中估计动态系统的状态。在无线通信领域,尤其是在正交频分复用(OFDM)系统中,卡尔曼滤波器被广泛应用于信道估计。下面详细描述Kalman信道估计的过程:1.基本原理:在OFDM系统中,由于多径效应和多普勒频移,信道的特性会随时间而变化。卡尔曼滤波器通过对接收信号
- 课题学习(十六)----阅读《Continuous Wellbore Surveying While Drilling Utilizing MEMS Gyroscopes Based...》论文
致虚守静~归根复命
课题学习学习算法人工智能卡尔曼滤波动态测量惯性导航
论文全称:《ContinuousWellboreSurveyingWhileDrillingUtilizingMEMSGyroscopesBasedonKalmanFiltering》摘要: 目前在钻井过程中计算井筒的方法是基于在所需位置的固定测量。这是通过测量当前和先前测量站之间钻孔的倾角和方位角来完成的。利用基于钻孔形状假设的数学模型,可以推导出井眼坐标。目前的方法忽略了两个测量站之间的
- sql统计相同项个数并按名次显示
朱辉辉33
javaoracle
现在有如下这样一个表:
A表
ID Name time
------------------------------
0001 aaa 2006-11-18
0002 ccc 2006-11-18
0003 eee 2006-11-18
0004 aaa 2006-11-18
0005 eee 2006-11-18
0004 aaa 2006-11-18
0002 ccc 20
- Android+Jquery Mobile学习系列-目录
白糖_
JQuery Mobile
最近在研究学习基于Android的移动应用开发,准备给家里人做一个应用程序用用。向公司手机移动团队咨询了下,觉得使用Android的WebView上手最快,因为WebView等于是一个内置浏览器,可以基于html页面开发,不用去学习Android自带的七七八八的控件。然后加上Jquery mobile的样式渲染和事件等,就能非常方便的做动态应用了。
从现在起,往后一段时间,我打算
- 如何给线程池命名
daysinsun
线程池
在系统运行后,在线程快照里总是看到线程池的名字为pool-xx,这样导致很不好定位,怎么给线程池一个有意义的名字呢。参照ThreadPoolExecutor类的ThreadFactory,自己实现ThreadFactory接口,重写newThread方法即可。参考代码如下:
public class Named
- IE 中"HTML Parsing Error:Unable to modify the parent container element before the
周凡杨
html解析errorreadyState
错误: IE 中"HTML Parsing Error:Unable to modify the parent container element before the child element is closed"
现象: 同事之间几个IE 测试情况下,有的报这个错,有的不报。经查询资料后,可归纳以下原因。
- java上传
g21121
java
我们在做web项目中通常会遇到上传文件的情况,用struts等框架的会直接用的自带的标签和组件,今天说的是利用servlet来完成上传。
我们这里利用到commons-fileupload组件,相关jar包可以取apache官网下载:http://commons.apache.org/
下面是servlet的代码:
//定义一个磁盘文件工厂
DiskFileItemFactory fact
- SpringMVC配置学习
510888780
springmvc
spring MVC配置详解
现在主流的Web MVC框架除了Struts这个主力 外,其次就是Spring MVC了,因此这也是作为一名程序员需要掌握的主流框架,框架选择多了,应对多变的需求和业务时,可实行的方案自然就多了。不过要想灵活运用Spring MVC来应对大多数的Web开发,就必须要掌握它的配置及原理。
一、Spring MVC环境搭建:(Spring 2.5.6 + Hi
- spring mvc-jfreeChart 柱图(1)
布衣凌宇
jfreechart
第一步:下载jfreeChart包,注意是jfreeChart文件lib目录下的,jcommon-1.0.23.jar和jfreechart-1.0.19.jar两个包即可;
第二步:配置web.xml;
web.xml代码如下
<servlet>
<servlet-name>jfreechart</servlet-nam
- 我的spring学习笔记13-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java P
- java 线程池使用 Runnable&Callable&Future
antlove
javathreadRunnablecallablefuture
1. 创建线程池
ExecutorService executorService = Executors.newCachedThreadPool();
2. 执行一次线程,调用Runnable接口实现
Future<?> future = executorService.submit(new DefaultRunnable());
System.out.prin
- XML语法元素结构的总结
百合不是茶
xml树结构
1.XML介绍1969年 gml (主要目的是要在不同的机器进行通信的数据规范)1985年 sgml standard generralized markup language1993年 html(www网)1998年 xml extensible markup language
- 改变eclipse编码格式
bijian1013
eclipse编码格式
1.改变整个工作空间的编码格式
改变整个工作空间的编码格式,这样以后新建的文件也是新设置的编码格式。
Eclipse->window->preferences->General->workspace-
- javascript中return的设计缺陷
bijian1013
JavaScriptAngularJS
代码1:
<script>
var gisService = (function(window)
{
return
{
name:function ()
{
alert(1);
}
};
})(this);
gisService.name();
&l
- 【持久化框架MyBatis3八】Spring集成MyBatis3
bit1129
Mybatis3
pom.xml配置
Maven的pom中主要包括:
MyBatis
MyBatis-Spring
Spring
MySQL-Connector-Java
Druid
applicationContext.xml配置
<?xml version="1.0" encoding="UTF-8"?>
&
- java web项目启动时自动加载自定义properties文件
bitray
javaWeb监听器相对路径
创建一个类
public class ContextInitListener implements ServletContextListener
使得该类成为一个监听器。用于监听整个容器生命周期的,主要是初始化和销毁的。
类创建后要在web.xml配置文件中增加一个简单的监听器配置,即刚才我们定义的类。
<listener>
<des
- 用nginx区分文件大小做出不同响应
ronin47
昨晚和前21v的同事聊天,说到我离职后一些技术上的更新。其中有个给某大客户(游戏下载类)的特殊需求设计,因为文件大小差距很大——估计是大版本和补丁的区别——又走的是同一个域名,而squid在响应比较大的文件时,尤其是初次下载的时候,性能比较差,所以拆成两组服务器,squid服务于较小的文件,通过pull方式从peer层获取,nginx服务于较大的文件,通过push方式由peer层分发同步。外部发布
- java-67-扑克牌的顺子.从扑克牌中随机抽5张牌,判断是不是一个顺子,即这5张牌是不是连续的.2-10为数字本身,A为1,J为11,Q为12,K为13,而大
bylijinnan
java
package com.ljn.base;
import java.util.Arrays;
import java.util.Random;
public class ContinuousPoker {
/**
* Q67 扑克牌的顺子 从扑克牌中随机抽5张牌,判断是不是一个顺子,即这5张牌是不是连续的。
* 2-10为数字本身,A为1,J为1
- 翟鸿燊老师语录
ccii
翟鸿燊
一、国学应用智慧TAT之亮剑精神A
1. 角色就是人格
就像你一回家的时候,你一进屋里面,你已经是儿子,是姑娘啦,给老爸老妈倒怀水吧,你还觉得你是老总呢?还拿派呢?就像今天一样,你们往这儿一坐,你们之间是什么,同学,是朋友。
还有下属最忌讳的就是领导向他询问情况的时候,什么我不知道,我不清楚,该你知道的你凭什么不知道
- [光速与宇宙]进行光速飞行的一些问题
comsci
问题
在人类整体进入宇宙时代,即将开展深空宇宙探索之前,我有几个猜想想告诉大家
仅仅是猜想。。。未经官方证实
1:要在宇宙中进行光速飞行,必须首先获得宇宙中的航行通行证,而这个航行通行证并不是我们平常认为的那种带钢印的证书,是什么呢? 下面我来告诉
- oracle undo解析
cwqcwqmax9
oracle
oracle undo解析2012-09-24 09:02:01 我来说两句 作者:虫师收藏 我要投稿
Undo是干嘛用的? &nb
- java中各种集合的详细介绍
dashuaifu
java集合
一,java中各种集合的关系图 Collection 接口的接口 对象的集合 ├ List 子接口 &n
- 卸载windows服务的方法
dcj3sjt126com
windowsservice
卸载Windows服务的方法
在Windows中,有一类程序称为服务,在操作系统内核加载完成后就开始加载。这里程序往往运行在操作系统的底层,因此资源占用比较大、执行效率比较高,比较有代表性的就是杀毒软件。但是一旦因为特殊原因不能正确卸载这些程序了,其加载在Windows内的服务就不容易删除了。即便是删除注册表中的相 应项目,虽然不启动了,但是系统中仍然存在此项服务,只是没有加载而已。如果安装其他
- Warning: The Copy Bundle Resources build phase contains this target's Info.plist
dcj3sjt126com
iosxcode
http://developer.apple.com/iphone/library/qa/qa2009/qa1649.html
Excerpt:
You are getting this warning because you probably added your Info.plist file to your Copy Bundle
- 2014之C++学习笔记(一)
Etwo
C++EtwoEtwoiterator迭代器
已经有很长一段时间没有写博客了,可能大家已经淡忘了Etwo这个人的存在,这一年多以来,本人从事了AS的相关开发工作,但最近一段时间,AS在天朝的没落,相信有很多码农也都清楚,现在的页游基本上达到饱和,手机上的游戏基本被unity3D与cocos占据,AS基本没有容身之处。so。。。最近我并不打算直接转型
- js跨越获取数据问题记录
haifengwuch
jsonpjsonAjax
js的跨越问题,普通的ajax无法获取服务器返回的值。
第一种解决方案,通过getson,后台配合方式,实现。
Java后台代码:
protected void doPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {
String ca
- 蓝色jQuery导航条
ini
JavaScripthtmljqueryWebhtml5
效果体验:http://keleyi.com/keleyi/phtml/jqtexiao/39.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>jQuery鼠标悬停上下滑动导航条 - 柯乐义<
- linux部署jdk,tomcat,mysql
kerryg
jdktomcatlinuxmysql
1、安装java环境jdk:
一般系统都会默认自带的JDK,但是不太好用,都会卸载了,然后重新安装。
1.1)、卸载:
(rpm -qa :查询已经安装哪些软件包;
rmp -q 软件包:查询指定包是否已
- DOMContentLoaded VS onload VS onreadystatechange
mutongwu
jqueryjs
1. DOMContentLoaded 在页面html、script、style加载完毕即可触发,无需等待所有资源(image/iframe)加载完毕。(IE9+)
2. onload是最早支持的事件,要求所有资源加载完毕触发。
3. onreadystatechange 开始在IE引入,后来其它浏览器也有一定的实现。涉及以下 document , applet, embed, fra
- sql批量插入数据
qifeifei
批量插入
hi,
自己在做工程的时候,遇到批量插入数据的数据修复场景。我的思路是在插入前准备一个临时表,临时表的整理就看当时的选择条件了,临时表就是要插入的数据集,最后再批量插入到数据库中。
WITH tempT AS (
SELECT
item_id AS combo_id,
item_id,
now() AS create_date
FROM
a
- log4j打印日志文件 如何实现相对路径到 项目工程下
thinkfreer
Weblog4j应用服务器日志
最近为了实现统计一个网站的访问量,记录用户的登录信息,以方便站长实时了解自己网站的访问情况,选择了Apache 的log4j,但是在选择相对路径那块 卡主了,X度了好多方法(其实大多都是一样的内用,还一个字都不差的),都没有能解决问题,无奈搞了2天终于解决了,与大家分享一下
需求:
用户登录该网站时,把用户的登录名,ip,时间。统计到一个txt文档里,以方便其他系统调用此txt。项目名
- linux下mysql-5.6.23.tar.gz安装与配置
笑我痴狂
mysqllinuxunix
1.卸载系统默认的mysql
[root@localhost ~]# rpm -qa | grep mysql
mysql-libs-5.1.66-2.el6_3.x86_64
mysql-devel-5.1.66-2.el6_3.x86_64
mysql-5.1.66-2.el6_3.x86_64
[root@localhost ~]# rpm -e mysql-libs-5.1