图像处理之一阶微分应用

图像处理之一阶微分应用

一:数学背景

首先看一下一维的微分公式Δf = f(x+1) – f(x), 对于一幅二维的数字图像f(x,y)而言,需要完

成XY两个方向上的微分,所以有如下的公式:

分别对X,Y两个方向上求出它们的偏微分,最终得到梯度Delta F.

对于离散的图像来说,一阶微分的数学表达相当于两个相邻像素的差值,根据选择的梯度算

子不同,效果可能有所不同,但是基本原理不会变化。最常见的算子为Roberts算子,其它

常见还有Sobel,Prewitt等算子。以Roberts算子为例的X,Y的梯度计算演示如下图:


二:图像微分应用

图像微分(梯度计算)是图像边缘提取的重要的中间步骤,根据X,Y方向的梯度向量值,可以

得到如下两个重要参数振幅magnitude, 角度theta,计算公式如下:


Theta = tan-1(yGradient/xGradient)

magnitude表示边缘强度信息

theta预言边缘的方向走势。

假如对一幅数字图像,求出magnitude之后与原来每个像素点对应值相加,则图像边缘将被

大大加强,轮廓更加明显,是一个很典型的sharp filter的效果。

三:程序效果

X, Y梯度效果,及magnitude效果


图像微分的Sharp效果:


四:程序源代码

package com.process.blur.study;

import java.awt.image.BufferedImage;

// roberts operator
// X direction 1, 0
//             0,-1
// Y direction 0, 1
//			  -1, 0

public class ImageGradientFilter extends AbstractBufferedImageOp {
	public final static int X_DIRECTION = 0;
	public final static int Y_DIRECTION = 2;
	public final static int XY_DIRECTION = 4;
	
	private boolean sharp;
	private int direction;
	
	public ImageGradientFilter() {
		direction = XY_DIRECTION; // default;
		sharp = false;
	}
	
	public boolean isSharp() {
		return sharp;
	}

	public void setSharp(boolean sharp) {
		this.sharp = sharp;
	}

	public int getDirection() {
		return direction;
	}

	public void setDirection(int direction) {
		this.direction = direction;
	}

	@Override
	public BufferedImage filter(BufferedImage src, BufferedImage dest) {
		int width = src.getWidth();
        int height = src.getHeight();

        if (dest == null )
        	dest = createCompatibleDestImage( src, null );

        int[] inPixels = new int[width*height];
        int[] outPixels = new int[width*height];
        getRGB( src, 0, 0, width, height, inPixels );
        int index = 0;
        double mred, mgreen, mblue;
        int newX, newY;
        int index1, index2, index3;
        for(int row=0; row 0 && newX < width) {
        			newX = col + 1;
        		} else {
        			newX = 0;
        		}
        		
        		if(newY > 0 && newY < height) {
        			newY = row + 1;
        		} else {
        			newY = 0;
        		}
        		index1 = newY * width + newX;
        		index2 = row * width + newX;
        		index3 = newY * width + col;
        		ta = (inPixels[index] >> 24) & 0xff;
                tr = (inPixels[index] >> 16) & 0xff;
                tg = (inPixels[index] >> 8) & 0xff;
                tb = inPixels[index] & 0xff;
                
        		int ta1 = (inPixels[index1] >> 24) & 0xff;
                int tr1 = (inPixels[index1] >> 16) & 0xff;
                int tg1 = (inPixels[index1] >> 8) & 0xff;
                int tb1 = inPixels[index1] & 0xff;
                
                int xgred = tr -tr1;
                int xggreen = tg - tg1;
                int xgblue = tb - tb1;
                
        		int ta2 = (inPixels[index2] >> 24) & 0xff;
                int tr2 = (inPixels[index2] >> 16) & 0xff;
                int tg2 = (inPixels[index2] >> 8) & 0xff;
                int tb2 = inPixels[index2] & 0xff;
                
        		int ta3 = (inPixels[index3] >> 24) & 0xff;
                int tr3 = (inPixels[index3] >> 16) & 0xff;
                int tg3 = (inPixels[index3] >> 8) & 0xff;
                int tb3 = inPixels[index3] & 0xff;
                
                int ygred = tr2 - tr3;
                int yggreen = tg2 - tg3;
                int ygblue = tb2 - tb3;
                
                mred = Math.sqrt(xgred * xgred + ygred * ygred);
                mgreen = Math.sqrt(xggreen * xggreen + yggreen * yggreen);
                mblue = Math.sqrt(xgblue * xgblue + ygblue * ygblue);
                if(sharp) {
                	tr = (int)(tr + mred);
                	tg = (int)(tg + mgreen);
                	tb = (int)(tb + mblue);
                	outPixels[index] = (ta << 24) | (clamp(tr) << 16) | (clamp(tg) << 8) | clamp(tb);
                } else {
                    outPixels[index] = (ta << 24) | (clamp((int)mred) << 16) | (clamp((int)mgreen) << 8) | clamp((int)mblue);
                    // outPixels[index] = (ta << 24) | (clamp((int)ygred) << 16) | (clamp((int)yggreen) << 8) | clamp((int)ygblue);
                    // outPixels[index] = (ta << 24) | (clamp((int)xgred) << 16) | (clamp((int)xggreen) << 8) | clamp((int)xgblue);
                }
                
                
        	}
        }
        setRGB(dest, 0, 0, width, height, outPixels );
        return dest;
	}

	public static int clamp(int c) {
		if (c < 0)
			return 0;
		if (c > 255)
			return 255;
		return c;
	}
}
转载时请务必注明

你可能感兴趣的:(python,人工智能,java)